scholarly journals Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection

mSystems ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Inês N. Silva ◽  
Pedro M. Santos ◽  
Mário R. Santos ◽  
James E. A. Zlosnik ◽  
David P. Speert ◽  
...  

ABSTRACT Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient’s lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression. Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o− epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient’s lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient’s lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression.

2017 ◽  
Vol 55 (7) ◽  
pp. 2074-2085 ◽  
Author(s):  
B. D. Edwards ◽  
J. Greysson-Wong ◽  
R. Somayaji ◽  
B. Waddell ◽  
F. J. Whelan ◽  
...  

ABSTRACTAchromobacterspecies are increasingly being detected in cystic fibrosis (CF) patients, with an unclear epidemiology and impact. We studied a cohort of patients attending a Canadian adult CF clinic who had positive sputum cultures forAchromobacterspecies in the period from 1984 to 2013. Infection was categorized as transient or persistent (≥50% positive cultures for 1 year). Those with persistent infection were matched 2:1 with age-, sex-, and time-matched controls without a history ofAchromobacterinfection, and mixed-effects models were used to assess pulmonary exacerbation (PEx) frequency and lung function decline. Isolates from a biobank were retrospectively assessed, identified to the species level bynrdAsequencing, and genotyped using pulsed-field gel electrophoresis (PFGE). Thirty-four patients (11% of those in our clinic), with a median age of 24 years (interquartile range [IQR], 20.3 to 29.8 years), developedAchromobacterinfection. Ten patients (29%) developed persistent infection. Persistence did not denote permanence, as most patients ultimately cleared infection, often after years. Patients were more likely to experience PEx at incident isolation than at prior or subsequent visits (odds ratio [OR], 2.7 [95% confidence interval {CI}, 1.2 to 6.7];P= 0.03). Following persistent infection, there was no difference in annual lung function decline (−1.08% [95% CI, −2.73 to 0.57%] versus −2.74% [95% CI, −4.02 to 1.46%];P= 0.12) or the odds of PEx (OR, 1.21 [95% CI, 0.45 to 3.28];P= 0.70). Differential virulence amongAchromobacterspecies was not observed, and no cases of transmission occurred. We demonstrated that incidentAchromobacterinfection was associated with a greater risk of PEx; however, neither transient nor chronic infection was associated with a worsened long-term prognosis. Large, multicenter studies are needed to clarify the clinical impact, natural history, and transmissibility ofAchromobacter.


2016 ◽  
Vol 55 (1) ◽  
pp. 206-215 ◽  
Author(s):  
Chloé Dupont ◽  
Estelle Jumas-Bilak ◽  
Anne-Laure Michon ◽  
Raphaël Chiron ◽  
Hélène Marchandin

ABSTRACT Chronic colonization by opportunistic environmental bacteria is frequent in the airways of cystic fibrosis (CF) patients. Studies of Pseudomonas aeruginosa evolution during persistence have highlighted the emergence of pathoadaptive genotypes and phenotypes, leading to complex and diversified inpatient colonizing populations also observed at the intraspecimen level. Such diversity, including heterogeneity in resistance profiles, has been considered an adaptive strategy devoted to host persistence. Longitudinal genomic diversity has been shown for the emergent opportunistic pathogen Achromobacter , but phenotypic and genomic diversity has not yet been studied within a simple CF sputum sample. Here, we studied the genomic diversity and antimicrobial resistance heterogeneity of 132 Achromobacter species strains (8 to 27 strains of identical or distinct colonial morphotypes per specimen) recovered from the sputum samples of 9 chronically colonized CF patients. We highlighted the high within-sample and within-morphotype diversity of antimicrobial resistance (disk diffusion) and genomic (pulsed-field gel electrophoresis) profiles. No sputum sample included strains with identical pulsotypes or antibiotic susceptibility patterns. Differences in clinical categorization were observed for the 9 patients and concerned 3 to 11 antibiotics, including antibiotics recommended for use against Achromobacter . Within-sample antimicrobial resistance heterogeneity, not predictable from colonial morphology, suggested that it may represent a selective advantage against antibiotics in an Achromobacter persisting population and potentially compromise the antibiotic management of CF airway infections.


2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Andrea Sass ◽  
Tom Coenye

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is able to cause various infections, including airway infections in cystic fibrosis patients. Here, we present the complete closed and annotated genome sequence of P. aeruginosa AA2, an isolate obtained early during infection of the respiratory tract of a German cystic fibrosis patient.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Whitney E. England ◽  
Ted Kim ◽  
Rachel J. Whitaker

ABSTRACTViruses that infect the widespread opportunistic pathogenPseudomonas aeruginosahave been shown to influence physiology and critical clinical outcomes in cystic fibrosis (CF) patients. To understand how CRISPR-Cas immune interactions may contribute to the distribution and coevolution ofP. aeruginosaand its viruses, we reconstructed CRISPR arrays from a highly sampled longitudinal data set from CF patients attending the Copenhagen Cystic Fibrosis Clinic in Copenhagen, Denmark (R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Nat Genet 47:57–64, 2015,https://doi.org/10.1038/ng.3148). We show that new spacers are not added to or deleted from CRISPR arrays over time within a single patient but do vary among patients in this data set. We compared assembled CRISPR arrays from this data set to CRISPR arrays extracted from 726 additional publicly availableP. aeruginosasequences to show that local diversity in this population encompasses global diversity and that there is no evidence for population structure associated with location or environment sampled. We compare over 3,000 spacers from our global data set to 98 lytic and temperate viruses and proviruses and find a subset of related temperate virus clusters frequently targeted by CRISPR spacers. Highly targeted viruses are matched by different spacers in different arrays, resulting in a pattern of distributed immunity within the global population. Understanding the multiple immune contexts thatP. aeruginosaviruses face can be applied to study ofP. aeruginosagene transfer, the spread of epidemic strains in cystic fibrosis patients, and viral control ofP. aeruginosainfection.IMPORTANCEPseudomonas aeruginosais a widespread opportunistic pathogen and a major cause of morbidity and mortality in cystic fibrosis patients. Microbe-virus interactions play a critical role in shaping microbial populations, as viral infections can kill microbial populations or contribute to gene flow among microbes. Investigating howP. aeruginosauses its CRISPR immune system to evade viral infection aids our understanding of how this organism spreads and evolves alongside its viruses in humans and the environment. Here, we identify patterns of CRISPR targeting and immunity that indicateP. aeruginosaand its viruses evolve in both a broad global population and in isolated human “islands.” These data set the stage for exploring metapopulation dynamics occurring within and between isolated “island” populations associated with CF patients, an essential step to inform future work predicting the specificity and efficacy of virus therapy and the spread of invasive viral elements and pathogenic epidemic bacterial strains.


2019 ◽  
Vol 32 (3) ◽  
Author(s):  
Sankalp Malhotra ◽  
Don Hayes ◽  
Daniel J. Wozniak

SUMMARYIn human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span.Pseudomonas aeruginosais an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly,P. aeruginosaexhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii)P. aeruginosavirulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158193 ◽  
Author(s):  
Claudia Brandt ◽  
Anja Thronicke ◽  
Jobst F. Roehmel ◽  
Alexander Krannich ◽  
Doris Staab ◽  
...  

Author(s):  
Lidija Turkovic ◽  
Daan Caudri ◽  
Tim Rosenow ◽  
Graham Hall ◽  
Stephen Stick

The Lancet ◽  
1998 ◽  
Vol 351 (9100) ◽  
pp. 420 ◽  
Author(s):  
Adam Jaffé ◽  
Jackie Francis ◽  
Mark Rosenthal ◽  
Andrew Bush

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Julio Diaz Caballero ◽  
Shawn T. Clark ◽  
Bryan Coburn ◽  
Yu Zhang ◽  
Pauline W. Wang ◽  
...  

ABSTRACT Pulmonary infections caused by Pseudomonas aeruginosa are a recalcitrant problem in cystic fibrosis (CF) patients. While the clinical implications and long-term evolutionary patterns of these infections are well studied, we know little about the short-term population dynamics that enable this pathogen to persist despite aggressive antimicrobial therapy. Here, we describe a short-term population genomic analysis of 233 P. aeruginosa isolates collected from 12 sputum specimens obtained over a 1-year period from a single patient. Whole-genome sequencing and antimicrobial susceptibility profiling identified the expansion of two clonal lineages. The first lineage originated from the coalescence of the entire sample less than 3 years before the end of the study and gave rise to a high-diversity ancestral population. The second expansion occurred 2 years later and gave rise to a derived population with a strong signal of positive selection. These events show characteristics consistent with recurrent selective sweeps. While we cannot identify the specific mutations responsible for the origins of the clonal lineages, we find that the majority of mutations occur in loci previously associated with virulence and resistance. Additionally, approximately one-third of all mutations occur in loci that are mutated multiple times, highlighting the importance of parallel pathoadaptation. One such locus is the gene encoding penicillin-binding protein 3, which received three independent mutations. Our functional analysis of these alleles shows that they provide differential fitness benefits dependent on the antibiotic under selection. These data reveal that bacterial populations can undergo extensive and dramatic changes that are not revealed by lower-resolution analyses. IMPORTANCE Pseudomonas aeruginosa is a bacterial opportunistic pathogen responsible for significant morbidity and mortality in cystic fibrosis (CF) patients. Once it has colonized the lung in CF, it is highly resilient and rarely eradicated. This study presents a deep sampling examination of the fine-scale evolutionary dynamics of P. aeruginosa in the lungs of a chronically infected CF patient. We show that diversity of P. aeruginosa is driven by recurrent clonal emergence and expansion within this patient and identify potential adaptive variants associated with these events. This high-resolution sequencing strategy thus reveals important intraspecies dynamics that explain a clinically important phenomenon not evident at a lower-resolution analysis of community structure.


Author(s):  
Wai Leong ◽  
Carla Lutz ◽  
Jonathan Williams ◽  
Yan Hong Poh ◽  
Benny Yeo Ken Yee ◽  
...  

AbstractThe opportunistic pathogen, Pseudomonas aeruginosa, is ubiquitous in the environment, and in humans is capable of causing acute and chronic infections. P. aeruginosa, when co-incubated with the bacterivorous amoeba, Acanthamoeba castellanii, for extended periods, produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence towards the nematode, Caenorhabditis elegans, was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early stage amoeba-adapted and non-adapted counterparts. Late-stage amoeba-adapted P. aeruginosa lost competitive fitness compared to non-adapted counterparts when grown in nutrient rich media. However, non-adapted P. aeruginosa were rapidly cleared by amoeba predation, whereas late-stage amoeba-adapted isolates remained in higher numbers 24 h after ingestion by amoeba. In addition, there was reduced uptake by macrophage of amoeba-adapted isolates and reduced uptake by human neutrophils as well as increased survival in the presence of neutrophils. Our findings indicate that the selection imposed by amoeba on P. aeruginosa resulted in reduced virulence over time. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to what is observed for isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types.Author SummaryPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans and also causes chronic infections in immune compromised and cystic fibrosis patients. This bacterium is commonly found in soils and water where bacteria are constantly under threat of being consumed by the bacterial predators, protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here we examined the effect of long-term predation on the genotype and phenotypes expressed by P. aeruginosa. We show that long-term co-incubation with protozoa resulted in mutations in the bacteria that made them less pathogenic. This is particularly interesting as we see similar mutations arise in bacteria associated with chronic infections. Thus, predation by protozoa and long term colonization of the human host may represent similar environments that select for similar losses in gene functions.


Sign in / Sign up

Export Citation Format

Share Document