scholarly journals Impact of High Diversity of Achromobacter Populations within Cystic Fibrosis Sputum Samples on Antimicrobial Susceptibility Testing

2016 ◽  
Vol 55 (1) ◽  
pp. 206-215 ◽  
Author(s):  
Chloé Dupont ◽  
Estelle Jumas-Bilak ◽  
Anne-Laure Michon ◽  
Raphaël Chiron ◽  
Hélène Marchandin

ABSTRACT Chronic colonization by opportunistic environmental bacteria is frequent in the airways of cystic fibrosis (CF) patients. Studies of Pseudomonas aeruginosa evolution during persistence have highlighted the emergence of pathoadaptive genotypes and phenotypes, leading to complex and diversified inpatient colonizing populations also observed at the intraspecimen level. Such diversity, including heterogeneity in resistance profiles, has been considered an adaptive strategy devoted to host persistence. Longitudinal genomic diversity has been shown for the emergent opportunistic pathogen Achromobacter , but phenotypic and genomic diversity has not yet been studied within a simple CF sputum sample. Here, we studied the genomic diversity and antimicrobial resistance heterogeneity of 132 Achromobacter species strains (8 to 27 strains of identical or distinct colonial morphotypes per specimen) recovered from the sputum samples of 9 chronically colonized CF patients. We highlighted the high within-sample and within-morphotype diversity of antimicrobial resistance (disk diffusion) and genomic (pulsed-field gel electrophoresis) profiles. No sputum sample included strains with identical pulsotypes or antibiotic susceptibility patterns. Differences in clinical categorization were observed for the 9 patients and concerned 3 to 11 antibiotics, including antibiotics recommended for use against Achromobacter . Within-sample antimicrobial resistance heterogeneity, not predictable from colonial morphology, suggested that it may represent a selective advantage against antibiotics in an Achromobacter persisting population and potentially compromise the antibiotic management of CF airway infections.

2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Andrea Sass ◽  
Tom Coenye

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is able to cause various infections, including airway infections in cystic fibrosis patients. Here, we present the complete closed and annotated genome sequence of P. aeruginosa AA2, an isolate obtained early during infection of the respiratory tract of a German cystic fibrosis patient.


mSystems ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Inês N. Silva ◽  
Pedro M. Santos ◽  
Mário R. Santos ◽  
James E. A. Zlosnik ◽  
David P. Speert ◽  
...  

ABSTRACT Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient’s lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression. Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o− epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient’s lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient’s lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression.


mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Holly K. Huse ◽  
Taejoon Kwon ◽  
James E. A. Zlosnik ◽  
David P. Speert ◽  
Edward M. Marcotte ◽  
...  

ABSTRACTThe Gram-negative bacteriumPseudomonas aeruginosais a common cause of chronic airway infections in individuals with the heritable disease cystic fibrosis (CF). After prolonged colonization of the CF lung,P. aeruginosabecomes highly resistant to host clearance and antibiotic treatment; therefore, understanding how this bacterium evolves during chronic infection is important for identifying beneficial adaptations that could be targeted therapeutically. To identify potential adaptive traits ofP. aeruginosaduring chronic infection, we carried out global transcriptomic profiling of chronological clonal isolates obtained from 3 individuals with CF. Isolates were collected sequentially over periods ranging from 3 months to 8 years, representing up to 39,000in vivogenerations. We identified 24 genes that were commonly regulated by all 3P. aeruginosalineages, including several genes encoding traits previously shown to be important forin vivogrowth. Our results reveal that parallel evolution occurs in the CF lung and that at least a proportion of the traits identified are beneficial forP. aeruginosachronic colonization of the CF lung.IMPORTANCEDeadly diseases like AIDS, malaria, and tuberculosis are the result of long-term chronic infections. Pathogens that cause chronic infections adapt to the host environment, avoiding the immune response and resisting antimicrobial agents. Studies of pathogen adaptation are therefore important for understanding how the efficacy of current therapeutics may change upon prolonged infection. One notorious chronic pathogen isPseudomonas aeruginosa, a bacterium that causes long-term infections in individuals with the heritable disease cystic fibrosis (CF). We used gene expression profiles to identify 24 genes that commonly changed expression over time in 3P. aeruginosalineages, indicating that these changes occur in parallel in the lungs of individuals with CF. Several of these genes have previously been shown to encode traits critical forin vivo-relevant processes, suggesting that they are likely beneficial adaptations important for chronic colonization of the CF lung.


2012 ◽  
Vol 194 (18) ◽  
pp. 4857-4866 ◽  
Author(s):  
Jade C. S. Chung ◽  
Jennifer Becq ◽  
Louise Fraser ◽  
Ole Schulz-Trieglaff ◽  
Nicholas J. Bond ◽  
...  

ABSTRACTThe airways of individuals with cystic fibrosis (CF) often become chronically infected with unique strains of the opportunistic pathogenPseudomonas aeruginosa. Several lines of evidence suggest that the infectingP. aeruginosalineage diversifies in the CF lung niche, yet so far this contemporary diversity has not been investigated at a genomic level. In this work, we sequenced the genomes of pairs of randomly selected contemporary isolates sampled from the expectorated sputum of three chronically infected adult CF patients. Each patient was infected by a distinct strain ofP. aeruginosa. Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were identified in the DNA common to the paired isolates from different patients. The paired isolates from one patient differed due to just 1 SNP and 8 indels. The paired isolates from a second patient differed due to 54 SNPs and 38 indels. The pair of isolates from the third patient both contained amutSmutation, which conferred a hypermutator phenotype; these isolates cumulatively differed due to 344 SNPs and 93 indels. In two of the pairs of isolates, a different accessory genome composition, specifically integrated prophage, was identified in one but not the other isolate of each pair. We conclude that contemporary isolates from a single sputum sample can differ at the SNP, indel, and accessory genome levels and that the cross-sectional genomic variation among coeval pairs ofP. aeruginosaCF isolates can be comparable to the variation previously reported to differentiate between paired longitudinally sampled isolates.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Whitney E. England ◽  
Ted Kim ◽  
Rachel J. Whitaker

ABSTRACTViruses that infect the widespread opportunistic pathogenPseudomonas aeruginosahave been shown to influence physiology and critical clinical outcomes in cystic fibrosis (CF) patients. To understand how CRISPR-Cas immune interactions may contribute to the distribution and coevolution ofP. aeruginosaand its viruses, we reconstructed CRISPR arrays from a highly sampled longitudinal data set from CF patients attending the Copenhagen Cystic Fibrosis Clinic in Copenhagen, Denmark (R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Nat Genet 47:57–64, 2015,https://doi.org/10.1038/ng.3148). We show that new spacers are not added to or deleted from CRISPR arrays over time within a single patient but do vary among patients in this data set. We compared assembled CRISPR arrays from this data set to CRISPR arrays extracted from 726 additional publicly availableP. aeruginosasequences to show that local diversity in this population encompasses global diversity and that there is no evidence for population structure associated with location or environment sampled. We compare over 3,000 spacers from our global data set to 98 lytic and temperate viruses and proviruses and find a subset of related temperate virus clusters frequently targeted by CRISPR spacers. Highly targeted viruses are matched by different spacers in different arrays, resulting in a pattern of distributed immunity within the global population. Understanding the multiple immune contexts thatP. aeruginosaviruses face can be applied to study ofP. aeruginosagene transfer, the spread of epidemic strains in cystic fibrosis patients, and viral control ofP. aeruginosainfection.IMPORTANCEPseudomonas aeruginosais a widespread opportunistic pathogen and a major cause of morbidity and mortality in cystic fibrosis patients. Microbe-virus interactions play a critical role in shaping microbial populations, as viral infections can kill microbial populations or contribute to gene flow among microbes. Investigating howP. aeruginosauses its CRISPR immune system to evade viral infection aids our understanding of how this organism spreads and evolves alongside its viruses in humans and the environment. Here, we identify patterns of CRISPR targeting and immunity that indicateP. aeruginosaand its viruses evolve in both a broad global population and in isolated human “islands.” These data set the stage for exploring metapopulation dynamics occurring within and between isolated “island” populations associated with CF patients, an essential step to inform future work predicting the specificity and efficacy of virus therapy and the spread of invasive viral elements and pathogenic epidemic bacterial strains.


2019 ◽  
Vol 32 (3) ◽  
Author(s):  
Sankalp Malhotra ◽  
Don Hayes ◽  
Daniel J. Wozniak

SUMMARYIn human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span.Pseudomonas aeruginosais an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly,P. aeruginosaexhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii)P. aeruginosavirulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Julio Diaz Caballero ◽  
Shawn T. Clark ◽  
Bryan Coburn ◽  
Yu Zhang ◽  
Pauline W. Wang ◽  
...  

ABSTRACT Pulmonary infections caused by Pseudomonas aeruginosa are a recalcitrant problem in cystic fibrosis (CF) patients. While the clinical implications and long-term evolutionary patterns of these infections are well studied, we know little about the short-term population dynamics that enable this pathogen to persist despite aggressive antimicrobial therapy. Here, we describe a short-term population genomic analysis of 233 P. aeruginosa isolates collected from 12 sputum specimens obtained over a 1-year period from a single patient. Whole-genome sequencing and antimicrobial susceptibility profiling identified the expansion of two clonal lineages. The first lineage originated from the coalescence of the entire sample less than 3 years before the end of the study and gave rise to a high-diversity ancestral population. The second expansion occurred 2 years later and gave rise to a derived population with a strong signal of positive selection. These events show characteristics consistent with recurrent selective sweeps. While we cannot identify the specific mutations responsible for the origins of the clonal lineages, we find that the majority of mutations occur in loci previously associated with virulence and resistance. Additionally, approximately one-third of all mutations occur in loci that are mutated multiple times, highlighting the importance of parallel pathoadaptation. One such locus is the gene encoding penicillin-binding protein 3, which received three independent mutations. Our functional analysis of these alleles shows that they provide differential fitness benefits dependent on the antibiotic under selection. These data reveal that bacterial populations can undergo extensive and dramatic changes that are not revealed by lower-resolution analyses. IMPORTANCE Pseudomonas aeruginosa is a bacterial opportunistic pathogen responsible for significant morbidity and mortality in cystic fibrosis (CF) patients. Once it has colonized the lung in CF, it is highly resilient and rarely eradicated. This study presents a deep sampling examination of the fine-scale evolutionary dynamics of P. aeruginosa in the lungs of a chronically infected CF patient. We show that diversity of P. aeruginosa is driven by recurrent clonal emergence and expansion within this patient and identify potential adaptive variants associated with these events. This high-resolution sequencing strategy thus reveals important intraspecies dynamics that explain a clinically important phenomenon not evident at a lower-resolution analysis of community structure.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Stephen C. Watts ◽  
Louise M. Judd ◽  
Rosemary Carzino ◽  
Sarath Ranganathan ◽  
Kathryn E. Holt

Cystic fibrosis (CF) lung disease begins during infancy, and acute respiratory infections increase the risk of early disease development and progression. Microbes involved in advanced stages of CF are well characterized, but less is known about early respiratory colonizers.


mSphere ◽  
2021 ◽  
Author(s):  
Laura J. Dunphy ◽  
Glynis L. Kolling ◽  
Matthew L. Jenior ◽  
Joanne Carroll ◽  
April E. Attai ◽  
...  

P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document