scholarly journals Untangling Species-Level Composition of Complex Bacterial Communities through a Novel Metagenomic Approach

mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Christian Milani ◽  
Giulia Alessandri ◽  
Marta Mangifesta ◽  
Leonardo Mancabelli ◽  
Gabriele Andrea Lugli ◽  
...  

ABSTRACT 16S small-subunit (SSU) rRNA gene-based bacterial profiling is the gold standard for cost-effective taxonomic reconstruction of complex bacterial populations down to the genus level. However, it has been proven ineffective in clinical and research settings requiring higher taxonomic resolution. We therefore developed a bacterial profiling method based on the internal transcribed spacer (ITS) region employing optimized primers and a comprehensive ITS database for accurate cataloguing of bacterial communities at (sub)species resolution. Performance of the microbial ITS profiling pipeline was tested through analysis of host-associated, food, and environmental matrices, while its efficacy in clinical settings was assessed through analysis of mucosal biopsy specimens of colorectal cancer, leading to the identification of putative novel biomarkers. The data collected indicate that the proposed pipeline represents a major step forward in cost-effective identification and screening of microbial biomarkers at (sub)species level, with relevant impact in research, industrial, and clinical settings. IMPORTANCE We developed a novel method for accurate cataloguing of bacterial communities at (sub)species level involving amplification of the internal transcribed spacer (ITS) region through optimized primers, followed by next-generation sequencing and taxonomic classification of amplicons by means of a comprehensive database of bacterial ITS sequences. Host-associated, food, and environmental matrices were employed to test the performance of the microbial ITS profiling pipeline. Moreover, mucosal biopsy samples from colorectal cancer patients were analyzed to demonstrate the scientific relevance of this profiling approach in a clinical setting through identification of putative novel biomarkers. The results indicate that the ITS-based profiling pipeline proposed here represents a key metagenomic tool with major relevance for research, industrial, and clinical settings.

2000 ◽  
Vol 38 (4) ◽  
pp. 1510-1515 ◽  
Author(s):  
Travis Henry ◽  
Peter C. Iwen ◽  
Steven H. Hinrichs

Aspergillus species are the most frequent cause of invasive mold infections in immunocompromised patients. Although over 180 species are found within the genus, 3 species, Aspergillus flavus, A. fumigatus, and A. terreus, account for most cases of invasive aspergillosis (IA), with A. nidulans, A. niger, and A. ustus being rare causes of IA. The ability to distinguish between the various clinically relevant Aspergillus species may have diagnostic value, as certain species are associated with higher mortality and increased virulence and vary in their resistance to antifungal therapy. A method to identify Aspergillus at the species level and differentiate it from other true pathogenic and opportunistic molds was developed using the 18S and 28S rRNA genes for primer binding sites. The contiguous internal transcribed spacer (ITS) region, ITS 1–5.8S–ITS 2, from referenced strains and clinical isolates of aspergilli and other fungi were amplified, sequenced, and compared with non-reference strain sequences in GenBank. ITS amplicons fromAspergillus species ranged in size from 565 to 613 bp. Comparison of reference strains and GenBank sequences demonstrated that both ITS 1 and ITS 2 regions were needed for accurate identification ofAspergillus at the species level. Intraspecies variation among clinical isolates and reference strains was minimal. Sixteen other pathogenic molds demonstrated less than 89% similarity withAspergillus ITS 1 and 2 sequences. A blind study of 11 clinical isolates was performed, and each was correctly identified. Clinical application of this approach may allow for earlier diagnosis and selection of effective antifungal agents for patients with IA.


Author(s):  
Nurrahmi Dewi Fajarningsih

Despite the fact that fungi are important sources of both bioactive compounds and mycotoxins, and that they are very ubiquitous in our environment, their species identification is hampered by incomplete and often unclear literature. Fungi identification is primarily based on their phenotypic and physiological characteristics. Nowadays, many molecular methods to identify fungal species have been developed. One of the methods considered as a new concept to rapidly and accurately identify unknown fungal sample is DNA Barcoding. This literature review will outline the use of DNA barcoding approach to rapidly identify fungal species and the use of ITS region that recently has been designated as primary DNA barcode for fungal kingdom. “DNA barcode” is a short, highly variable and standardized DNA region with approximately 700 nucleotides in length, which is used as a unique pattern to identify living things. Internal Transcribed Spacer (ITS) region of nuclear DNA (rDNA) has become the most sequenced region to identify fungal taxonomy at species level, and even within species. ITS region is a highly polymorphic non-coding region with enough taxonomic units. Therefore, it is able to separate sequences into species level. Even though ribosomal ITS as a universal barcode marker for fungi is still hampered by few limitations, the ITS will remain as the key choice for fungal identification. The search for alternative regions as DNA marker to improve fungal identification, especially in specific heredities, has already started. 


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Mehta ◽  
S Niklitschek ◽  
F Fernandez ◽  
C Villagran ◽  
J Avila ◽  
...  

Abstract Background EKG interpretation is slowly transitioning to a physician-free, Artificial Intelligence (AI)-driven endeavor. Our continued efforts to innovate follow a carefully laid stepwise approach, as follows: 1) Create an AI algorithm that accurately identifies STEMI against non-STEMI using a 12-lead EKG; 2) Challenging said algorithm by including different EKG diagnosis to the previous experiment, and now 3) To further validate the accuracy and reliability of our algorithm while also improving performance in a prehospital and hospital settings. Purpose To provide an accurate, reliable, and cost-effective tool for STEMI detection with the potential to redirect human resources into other clinically relevant tasks and save the need for human resources. Methods Database: EKG records obtained from Latin America Telemedicine Infarct Network (Mexico, Colombia, Argentina, and Brazil) from April 2014 to December 2019. Dataset: A total of 11,567 12-lead EKG records of 10-seconds length with sampling frequency of 500 [Hz], including the following balanced classes: unconfirmed and angiographically confirmed STEMI, branch blocks, non-specific ST-T abnormalities, normal and abnormal (200+ CPT codes, excluding the ones included in other classes). The label of each record was manually checked by cardiologists to ensure precision (Ground truth). Pre-processing: The first and last 250 samples were discarded as they may contain a standardization pulse. An order 5 digital low pass filter with a 35 Hz cut-off was applied. For each record, the mean was subtracted to each individual lead. Classification: The determined classes were STEMI (STEMI in different locations of the myocardium – anterior, inferior and lateral); Not-STEMI (A combination of randomly sampled normal, branch blocks, non-specific ST-T abnormalities and abnormal records – 25% of each subclass). Training & Testing: A 1-D Convolutional Neural Network was trained and tested with a dataset proportion of 90/10; respectively. The last dense layer outputs a probability for each record of being STEMI or Not-STEMI. Additional testing was performed with a subset of the original dataset of angiographically confirmed STEMI. Results See Figure Attached – Preliminary STEMI Dataset Accuracy: 96.4%; Sensitivity: 95.3%; Specificity: 97.4% – Confirmed STEMI Dataset: Accuracy: 97.6%; Sensitivity: 98.1%; Specificity: 97.2%. Conclusions Our results remain consistent with our previous experience. By further increasing the amount and complexity of the data, the performance of the model improves. Future implementations of this technology in clinical settings look promising, not only in performing swift screening and diagnostic steps but also partaking in complex STEMI management triage. Funding Acknowledgement Type of funding source: None


Phytotaxa ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 134 ◽  
Author(s):  
QI ZHAO ◽  
YAN-JIA HAO ◽  
JIAN-KUI LIU ◽  
KEVIN D. HYDE ◽  
YANG-YANG CUI ◽  
...  

Infundibulicybe rufa sp. nov., is described from Jiuzhaigou Biosphere Reserve, southwestern China. It is characterized by the combination of the following characters: umbilicate to slightly infundibuliform, reddish brown pileus; decurrent, cream lamellae; cylindrical stipe concolorous with the pileus surface. Molecular phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) region indicates that I. rufa is closely related to I. mediterranea and I. bresadolana. A description, line drawings, phylogenetic placement and comparison with allied taxa for the new taxon are presented.


2002 ◽  
Vol 15 (1) ◽  
pp. 49 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Gay E. McKinnon ◽  
René E. Vaillancourt ◽  
Brad M. Potts

This expanded survey of ITS sequences represents the largest analysis of molecular data ever attempted on Eucalyptus. Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were included in an analysis of 90 species of Eucalyptus s.s. and 28 species representing eight other genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, Eucalyptopsis, Stockwellia, Lophostemon and Metrosideros). The results of the study indicate that Angophora and Corymbia form a well-supported clade that is highly differentiated from Eucalyptus s.s. Corymbia species are divided between two clades, one of which may be the sister to Angophora. Allosyncarpia, Arillastrum, Eucalyptopsis and ‘Stockwellia’ are also highly differentiated from Eucalyptus s.s. If the genus Eucalyptus is to be expanded to include Angophora and Corymbia(sensu Brooker 2000), ITS data suggest that Allosyncarpia, Eucalyptopsis, ‘Stockwellia’ and potentially Arillastrum should also be included in Eucalyptus s.l. The ITS data suggest that subg. Symphyomyrtus is paraphyletic and that subg. Minutifructus should be included within it. Within subg.Symphyomyrtus, only sect. Maidenaria appears to be monophyletic. Sections Adnataria and Dumaria are probably monophyletic; sections Exsertaria and Latoangulatae are very close and probably should be combined in a single section. Section Bisectae is polyphyletic and is divided into two distinct lineages. The phylogenetic groups depicted by ITS data are consistent with the frequency of natural inter-specific hybridisations as well as data from controlled crosses within subgenus Symphyomyrtus. The ITS data illustrate that subg. Idiogenes and western Australian monocalypts are early evolutionary lines relative to E. diversifolia, E. rubiginosa (monotypic subg. Primitiva) and the eastern monocalypts and that subg. Primitiva should be sunk into subg. Eucalyptus. Subgenus Eudesmia may be monophyletic, grouping with subgenera Idiogenes and Eucalyptus. Further work is required to confirm the phylogenetic positions of the monotypic subgenera Alveolata, Cruciformes, Acerosae and Cuboidea.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Victor Olusegun Oyetayo

Molecular identification of eighteenTermitomycesspecies collected from two states, Ondo and Ekiti in Nigeria was carried out using the internal transcribed spacer (ITS) region. The amplicons obtained from rDNA ofTermitomycesspecies were compared with existing sequences in the NCBI GenBank. The results of the ITS sequence analysis discriminated between all theTermitomycesspecies (obtained from Ondo and Ekiti States) andTermitomycessp. sequences obtained from NCBI GenBank. The degree of similarity of T1 to T18 to gene ofTermitomycessp. obtained from NCBI ranges between 82 and 99 percent.Termitomycesspecies from Garbon with ascension number AF321374 was the closest relative of T1 to T18 except T12 that has T. eurhizus and T. striatus as the closet relative. Phylogenetic tree generated with ITS sequences obtained from NCBI GenBank data revealed that T1 to T18 are more related toTermitomycesspecies indigenous to African countries such as Senegal, Congo, and Gabon.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 865-870 ◽  
Author(s):  
J. W. Hyun ◽  
N. A. Peres ◽  
S.-Y. Yi ◽  
L. W. Timmer ◽  
K. S. Kim ◽  
...  

Two scab pathogens of citrus, Elsinoë fawcettii and E. australis, cause citrus scab and sweet orange scab, respectively, and pathotypes of each species have been described. The two species cannot be readily distinguished by morphological or cultural characteristics and can be distinguished only by host range and the sequence of the internal transcribed spacer (ITS) region. In this study, random amplified polymorphic DNA (RAPD) assays clearly distinguished E. fawcettii and E. australis, and the sweet orange and natsudaidai pathotypes within E. australis also could be differentiated. We developed specific primer sets, Efaw-1 for E. fawcettii; Eaut-1, Eaut-2, Eaut-3, and Eaut-4 for E. australis; and EaNat-1 and EaNat-2 for the natsudaidai pathotype within E. australis using RAPD products unique to each species or pathotype. Other primer sets, Efaw-2 and Eaut-5, which were specific for E. fawcettii and E. australis, respectively, were designed from previously determined ITS sequences. The Efaw-1 and Efaw-2 primer sets successfully identified E. fawcettii isolates from Korea, Australia, and the United States (Florida) and the Eaut-1 to Eaut-5 primer sets identified both the sweet orange pathotype isolates of E. australis from Argentina and the natsudaidai pathotype isolates from Korea. The EaNat-1 and EaNat-2 primer sets were specific for isolates of the natsudaidai pathotype. The Efaw-1 and Efaw-2 primer sets successfully detected E. fawcettii from lesions on diseased leaves and fruit from Korea and primer pairs Eaut-1, Eaut-2, Eaut-3, Eaut-4, and Eaut-5 detected E. australis from lesions on sweet orange fruit from Brazil.


2012 ◽  
Vol 8 (4) ◽  
pp. 562-566 ◽  
Author(s):  
Thomas Pommier ◽  
Emmanuel J. P. Douzery ◽  
David Mouillot

Although environmental filtering has been observed to influence the biodiversity patterns of marine bacterial communities, it was restricted to the regional scale and to the species level, leaving the main drivers unknown at large biogeographic scales and higher taxonomic levels. Bacterial communities with different species compositions may nevertheless share phylogenetic lineages, and phylogenetic turnover (PT) among those communities may be surprisingly low along any biogeographic or environmental gradient. Here, we investigated the relative influence of environmental filtering and geographical distance on the PT between marine bacterial communities living more than 8000 km apart in contrasted abiotic conditions. PT was high between communities and was more structured by local environmental factors than by geographical distance, suggesting the predominance of a lineage filtering process. Strong phenotype-environment mismatches observed in the ocean may surpass high connectivity between marine microbial communities.


2011 ◽  
Vol 2 (1) ◽  
pp. 45-48 ◽  
Author(s):  
PV Dhond ◽  
Rajesh Yadav ◽  
Mudit Mittal ◽  
Shashi Kant

ABSTRACT Objective This study evaluates the symptoms and effects of peroral intralesional injections in relieving the symptoms of oral submucosal fibrosis (OSMF) in our clinical settings. Study design Retrospective clinical review at a primary care hospital of 32 patients with extensive OSMF who underwent peroral intralesional injections of steroid, hyaluronidase, placentrex and lignocaine performed in office setting. Results The main symptoms were change in color of buccal mucosa, trismus, burning mouth, vesicles in oral cavity. All patients experienced considerable improvement in their symptoms over a duration of 2 to 6 weeks. Conclusions Though, a large number of Indian population is suffering and seeking treatment for OSMF, unfortunately not much has been done in this area. It is difficult to find studies on peroral intralesional injection technique. When there is lack of reliable evidence of oral submucosal fibrosis treatment, the old technique of peroral intralesion shots of steroid, hyaluronidase, placentrex in lignocaine is safe and effective in resolving the symptoms associated with OSMF. The therapy is very cost effective and also reduces the need of surgery.


Sign in / Sign up

Export Citation Format

Share Document