scholarly journals Bacteria and Archaea Synergistically Convert Glycine Betaine to Biogenic Methane in the Formosa Cold Seep of the South China Sea

mSystems ◽  
2021 ◽  
Author(s):  
Lingyan Li ◽  
Wenting Zhang ◽  
Shengjie Zhang ◽  
Lei Song ◽  
Qinglei Sun ◽  
...  

Numerous cold seeps have been found in global continental margins where methane is enriched in pore waters that are forced upward from sediments. Therefore, high concerns have been focused on the methane-producing organisms and the metabolic pathways in these environments because methane is a potent greenhouse gas.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Wei Zhang ◽  
Jinqiang Liang ◽  
Qianyong Liang ◽  
Jiangong Wei ◽  
Zhifeng Wan ◽  
...  

Studying deep-water cold seep systems is of great significance to gas hydrate exploration due to their close relationship. Various cold seep systems and related gas hydrate accumulations have been discovered in the northern South China Sea in the past three decades. Based on high-resolution seismic data, subbottom profiles, in situ submergence observations, deep drilling and coring, and hydrate gas geochemical analyses, the geological and geophysical characteristics of these cold seep systems and their associated gas hydrate accumulations in the Qiongdongnan Basin, the Shenhu area, the Dongsha area, and the Taixinan Basin have been investigated. Cold seep systems are present in diverse stages of evolution and exhibit various seabed microgeomorphic, geological, and geochemical features. Active cold seep systems with a large amount of gas leakage, gas plumes, and microbial communities and inactive cold seep systems with authigenic carbonate pavements are related to the variable intensity of the gas-bearing fluid, which is usually derived from the deep strata through mud diapirs, mud volcanoes, gas chimneys, and faults. Gas hydrates are usually precipitated in cold seep vents and deeper vertical fluid migration pathways, indicating that deep gas-bearing fluid activities control the formation and accumulation of gas hydrates. The hydrocarbons collected from cold seep systems and their associated gas hydrate reservoirs are generally mixtures of biogenic gas and thermogenic gas, the origin of which is generally consistent with that of deep conventional gas. We also discuss the paragenetic relationship between the gas-bearing fluid and the seafloor morphology of cold seeps and the deep-shallow coupling of gas hydrates, cold seeps, and deep petroleum reservoirs. It is reasonable to conclude that the deep petroleum systems and gas-bearing fluid activity jointly control the development of cold seep systems and the accumulation of gas hydrates in the northern South China Sea. Therefore, the favorable areas for conventional oil and gas enrichment are also prospective areas for exploring active cold seeps and gas hydrates.


2020 ◽  
Vol 8 (11) ◽  
pp. 1699
Author(s):  
Juan Ling ◽  
Hongxiang Guan ◽  
Lihua Liu ◽  
Jun Tao ◽  
Jie Li ◽  
...  

The Haima cold seep, which is one of the two active cold seeps in the South China Sea, is known for its great ecological importance. The seep bivalves are assumed to depend mainly on their bacterial symbiosis for survival and growth. However, information on the bacterial diversity, composition, and putative function of gill-associated of dominant dwelling animals in Haima cold seep remain elusive. Herein, we adopted a high-throughput sequencing of 16S rRNA gene amplicons, and function prediction methods (Functional Annotation of Prokaryotic Taxa (FAPROTAX) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICURUSTs)) to purposely illustrate the taxonomic and phylogenetic diversity, composition, and putative functions of the symbionts in bathymodiolin mussel Gigantidas haimaensis (Bivalvia: Mytilidae: Gigantidas) and vesicomyid clam Archivesica marissinica (Bivalvia: Glossoidea: Vesicomyidae). The predominant microbes of both species were Proteobacteria and Gammaproteobacteria on the phylum and class level, respectively. The taxonomic and phylogenetic diversity of gill microbial communities in G. haimaensis were significantly different from those in A. marissinica (p < 0.05). Nine functional groups, including seven carbon-related biogeochemical groups, were identified through the FAPROTAX analysis. However, the most dominant groups for G. haimaensis and A. marissinica were both chemoheterotrophic. G. haimaensis and A. marissinica shared many pathways, however, 16 obtained Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups (42.11%) significantly differed between the two species (p < 0.05). These findings would provide insight into the functions of microbes in the element cycling and energy flow as well as the host-symbiont relationship of bivalves in the Haima cold seep environment.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yanping Zhang ◽  
Min Luo ◽  
Yu Hu ◽  
Hongbin Wang ◽  
Duofu Chen

Gas hydrates, acting as a dynamic methane reservoir, store methane in the form of a solid phase under high-pressure and low-temperature conditions and release methane through the sediment column into seawater when they are decomposed. The seepage of methane-rich fluid (i.e., cold hydrocarbon seeps) fuels the chemosynthetic biota-inhabited surface sediments and represents the major pathway to transfer carbon from sediments to the water column. Generally, the major biogeochemical reactions related to carbon cycling in the anoxic marine sediments include organic matter degradation via sulfate reduction (OSR), anaerobic oxidation of methane (AOM), methanogenesis (ME), and carbonate precipitation (CP). In order to better understand the carbon turnover in the cold seeps and gas hydrate-bearing areas of the northern South China Sea (SCS), we collected geochemical data of 358 cores from published literatures and retrieved 37 cores and corresponding pore water samples from three areas of interest (i.e., Xisha, Dongsha, and Shenhu areas). Reaction-transport simulations indicate that the rates of organic matter degradation and carbonate precipitation are comparable in the three areas, while the rates of AOM vary over several orders of magnitude (AOM: 8.3-37.5 mmol·m-2·yr-1 in Dongsha, AOM: 12.4-170.6 mmol·m-2·yr-1 in Xisha, and AOM: 9.4-30.5 mmol·m-2·yr-1 in Shenhu). Both the arithmetical mean and interpolation mean of the biogeochemical processes were calculated in each area. Averaging these two mean values suggested that the rates of organic matter degradation in Dongsha (25.7 mmol·m-2·yr-1) and Xisha (25.1 mmol·m-2·yr-1) are higher than that in Shenhu (12 mmol·m-2·yr-1) and the AOM rate in Xisha (135.2 mmol·m-2·yr-1) is greater than those in Dongsha (27.8 mmol·m-2·yr-1) and Shenhu (17.5 mmol·m-2·yr-1). In addition, the rate of carbonate precipitation (32.3 mmol·m-2·yr-1) in Xisha is far higher than those of the other two regions (5.3 mmol·m-2·yr-1 in Dongsha, 5.8 mmol·m-2·yr-1 in Shenhu) due to intense AOM sustained by gas dissolution. In comparison with other cold seeps around the world, the biogeochemical rates in the northern SCS are generally lower than those in active continental margins and special environments (e.g., the Black sea) but are comparable with those in passive continental margins. Collectively, ~2.8 Gmol organic matter was buried and at least ~0.82 Gmol dissolved organic and inorganic carbon was diffused out of sediments annually. This may, to some extent, have an impact on the long-term deep ocean carbon cycle in the northern SCS.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 256 ◽  
Author(s):  
Junxi Feng ◽  
Niu Li ◽  
Min Luo ◽  
Jinqiang Liang ◽  
Shengxiong Yang ◽  
...  

Widespread cold seeps along continental margins are significant sources of dissolved carbon to the ocean water. However, little is known about the methane turnovers and possible impact of seepage on the bottom seawater at the cold seeps in the South China Sea (SCS). We present seafloor observation and porewater data of six push cores, one piston core and three boreholes as well as fifteen bottom-water samples collected from four cold seep areas in the northwestern SCS. The depths of the sulfate–methane transition zone (SMTZ) are generally shallow, ranging from ~7 to <0.5 mbsf (meters below seafloor). Reaction-transport modelling results show that methane dynamics were highly variable due to the transport and dissolution of ascending gas. Dissolved methane is predominantly consumed by anaerobic oxidation of methane (AOM) at the SMTZ and trapped by gas hydrate formation below it, with depth-integrated AOM rates ranging from 59.0 and 591 mmol m−2 yr−1. The δ13C and Δ14C values of bottom-water dissolved inorganic carbon (DIC) suggest discharge of 13C- and 14C-depleted fossil carbon to the bottom water at the cold seep areas. Based on a two-endmember estimate, cold seeps fluids likely contribute 16–26% of the bottom seawater DIC and may have an impact on the long-term deep-sea carbon cycle. Our results reveal the methane-related carbon inventories are highly heterogeneous in the cold seep systems, which are probably dependent on the distances of the sampling sites to the seepage center. To our knowledge, this is the first quantitative study on the contribution of cold seep fluids to the bottom-water carbon reservoir of the SCS, and might help to understand the dynamics and the environmental impact of hydrocarbon seep in the SCS.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 216
Author(s):  
Pengfei Di ◽  
Dong Feng ◽  
Jun Tao ◽  
Duofu Chen

Natural cold seeps are an important source of methane and other greenhouse gases to the ocean and atmosphere in the marine environment. Accurate quantification of methane bubble fluxes from cold seeps is vital for evaluating their influence on the global methane budget and climate change. We quantified the flux of gas bubbles released from two natural cold seep sites in the South China Sea: one seep vent in the Haima cold seeps (1400 m depth) and three seep vents at Site F (1200 m depth). We determined bubble diameter, size distribution, and bubble release rate using image processing techniques and a semiautomatic bubble-counting algorithm. The bubble size distributions fit well to log-normal distribution, with median bubble diameters between 2.54 mm and 6.17 mm. The average bubble diameters and release rates (4.8–26.1 bubbles s−1) in Site F was lower than that in Haima cold seeps (22.6 bubbles s−1), which may be attributed to a variety of factors such as the nature of the gas reservoir, hydrostatic pressure, migration pathways in the sediments, and pore size. The methane fluxes emitted at Haima cold seeps (12.6 L h−1) and at Site F (4.9 L h−1) indicate that the Haima and Site F cold seeps in the South China Sea may be a source of methane to the ocean. However, temporal variations in the bubble release rate and the geochemical characteristics of the seeps were not constrained in this study due to the short observational time interval.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Zhang ◽  
Xi Xiao ◽  
Songze Chen ◽  
Jing Zhao ◽  
Zongheng Chen ◽  
...  

Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.


Author(s):  
Mingyang Niu ◽  
Qianyong Liang ◽  
Dong Feng ◽  
Fengping Wang

2021 ◽  
Vol 40 (7) ◽  
pp. 183-197
Author(s):  
Bin Liu ◽  
Jiangxin Chen ◽  
Li Yang ◽  
Minliang Duan ◽  
Shengxuan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document