scholarly journals Retooling Microbiome Engineering for a Sustainable Future

mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Christopher E. Lawson

Microbial communities (microbiomes) have been harnessed in biotechnology applications such as wastewater treatment and bioremediation for over a century. Traditionally, engineering approaches have focused on shaping the environment to steer microbiome function versus direct manipulation of the microbiome’s metabolic network.

2015 ◽  
Vol 12 ◽  
pp. 446-454 ◽  
Author(s):  
Li Xiao ◽  
Erica B. Young ◽  
Jacob J. Grothjan ◽  
Stephen Lyon ◽  
Husen Zhang ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


2011 ◽  
Vol 102 (4) ◽  
pp. 3790-3798 ◽  
Author(s):  
Qingxiang Yang ◽  
Wenyu Zhang ◽  
Hao Zhang ◽  
Yuhui Li ◽  
Chunmao Li

2016 ◽  
pp. 59-114 ◽  
Author(s):  
Jashan Gokal ◽  
Oluyemi Olatunji Awolusi ◽  
Abimbola Motunrayo Enitan ◽  
Sheena Kumari ◽  
Faizal Bux

2019 ◽  
Author(s):  
María Victoria Pérez ◽  
Leandro D. Guerrero ◽  
Esteban Orellana ◽  
Eva L. Figuerola ◽  
Leonardo Erijman

ABSTRACTUnderstanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of three years, including a period of nine month of disturbance, characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons and thein situgrowth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the ribosomal RNA (rrn) operon. Despite only moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, as the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCEIn this work we investigated the response of microbial communities to disturbances in a full-scale activated sludge wastewater treatment plant over a time-scale that included periods of stability and disturbance. We performed a genome-wide analysis, which allowed us the direct estimation of specific cellular traits, including the rRNA operon copy number and the in situ growth rate of bacteria. This work builds upon recent efforts to incorporate growth efficiency for the understanding of the physiological and ecological processes shaping microbial communities in nature. We found evidence that would suggest that activated sludge could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions. This paper provides relevant insights into wastewater treatment process, and may also reveal a key role for growth traits in the adaptive response of bacteria to unsteady environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document