scholarly journals MetFish: a Metabolomics Pipeline for Studying Microbial Communities in Chemically Extreme Environments

mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Chengdong Xu ◽  
Sneha P. Couvillion ◽  
Ryan L. Sontag ◽  
Nancy G. Isern ◽  
Yukari Maezato ◽  
...  

ABSTRACT Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here, we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exometabolomics analysis in sample matrices containing up to 2 M total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and it can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5 to 6 orders of magnitude) with excellent linearity, and low median interday reproducibility (e.g., 2.6%). MetFish was successfully applied in targeted and untargeted exometabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exometabolome during community succession; in situ in a native prairie soil, whose exometabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exometabolome over time in the well. IMPORTANCE The identification and accurate quantification of metabolites using electrospray ionization-mass spectrometry (ESI-MS) in hypersaline samples is a challenge due to matrix effects. Clean-up and desalting strategies that typically work well for samples with lower salt concentrations are often ineffective in hypersaline samples. To address this gap, we developed and demonstrated a simple yet sensitive and accurate method—MetFish—using chemical derivatization to enable mass spectrometry-based metabolomics in a variety of hypersaline samples from varied ecosystems and containing up to 2 M dissolved salts.

2019 ◽  
Author(s):  
Chengdong Xu ◽  
Sneha P. Couvillion ◽  
Ryan L. Sontag ◽  
Nancy G. Isern ◽  
Yukari Maezato ◽  
...  

Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exo-metabolomics analysis in sample matrices containing up to 2 molar total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5-6 orders of magnitude) with excellent linearity, and low median inter-day reproducibility (e.g. 2.6%). MetFish was successfully applied in targeted and untargeted exo-metabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exo-metabolome during community succession; in situ in a native prairie soil, whose exo-metabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exo-metabolome over time in the well.


2009 ◽  
Vol 2 (1) ◽  
pp. 119-151 ◽  
Author(s):  
J. P. Kercher ◽  
T. P. Riedel ◽  
J. A. Thornton

Abstract. We report a new method for the simultaneous in situ detection of nitryl chloride (ClNO2) and dinitrogen pentoxide (N2O5) using chemical ionization mass spectrometry (CIMS). The technique relies on the formation and detection of iodide ion-molecule clusters, I(ClNO2)− and I(N2O5)−. The novel N2O5 detection scheme is direct. It does not suffer from high and variable chemical interferences, which are associated with the typical method of nitrate anion detection. We address the role of water vapor, electric field strength, and instrument zero determinations, which influence the overall sensitivity and detection limit of this method. For both species, the method demonstrates high sensitivity (>1 Hz/pptv), precision (~10% for 100 pptv in 1 s), and accuracy (~20%), the latter ultimately determined by the nitrogen dioxide (NO2) cylinder calibration standard and characterization of inlet effects. For the typically low background signals (<10 Hz) and high selectivity, we estimate signal-to-noise (S/N) ratios of 2 for 1 pptv in 60 s averages, but uncertainty associated with the instrumental zero currently leads to an ultimate detection limit of ~5 pptv for both species. We validate our approach for the simultaneous in situ measurement of ClNO2 and N2O5 while on board the Research Vessel (RV) Knorr as part of the ICEALOT 2008 Field Campaign.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 91 ◽  
Author(s):  
Kandy Wang ◽  
Ian Graham ◽  
Laure Martin ◽  
Panagiotis Voudouris ◽  
Gaston Giuliani ◽  
...  

In this study, the oxygen isotope (δ18O) composition of pink to red gem-quality rubies from Paranesti, Greece was investigated using in-situ secondary ionization mass spectrometry (SIMS) and laser-fluorination techniques. Paranesti rubies have a narrow range of δ18O values between ~0 and +1‰ and represent one of only a few cases worldwide where δ18O signatures can be used to distinguish them from other localities. SIMS analyses from this study and previous work by the authors suggests that the rubies formed under metamorphic/metasomatic conditions involving deeply penetrating meteoric waters along major crustal structures associated with the Nestos Shear Zone. SIMS analyses also revealed slight variations in δ18O composition for two outcrops located just ~500 m apart: PAR-1 with a mean value of 1.0‰ ± 0.42‰ and PAR-5 with a mean value of 0.14‰ ± 0.24‰. This work adds to the growing use of in-situ methods to determine the origin of gem-quality corundum and re-confirms its usefulness in geographic “fingerprinting”.


Sign in / Sign up

Export Citation Format

Share Document