scholarly journals A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps

Author(s):  
Soledad Delgado ◽  
Celia Perales ◽  
Carlos García-Crespo ◽  
María Eugenia Soria ◽  
Isabel Gallego ◽  
...  

The study provides for the first time the haplotype profile and its variation in the course of its adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks.

2021 ◽  
Author(s):  
Soledad Delgado ◽  
Celia Perales ◽  
Carlos García-Crespo ◽  
María Eugenia Soria ◽  
Isabel Gallego ◽  
...  

ABSTRACTFitness landscapes reflect the adaptive potential of viruses. There is no information on how fitness peaks evolve when a virus replicates extensively in a controlled cell culture environment. Here we report the construction of Self-Organized Maps (SOMs), based on deep sequencing reads of three amplicons of the NS5A-NS5B-coding region of hepatitis C virus (HCV). A two-dimensional neural network was constructed and organized according to sequence relatedness. The third dimension of the fitness profile was given by the haplotype frequencies at each neuron. Fitness maps were derived for 44 HCV populations that share a common ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells. As the virus increased its adaptation to the cells, the number of fitness peaks expanded, and their distribution shifted in sequence space. The landscape consisted of an extended basal platform, and a lower number of protruding higher fitness peaks. The function that relates fitness level and peak abundance corresponds a power law, a relationship observed with other complex natural phenomena. The dense basal platform may serve as spring-board to attain high fitness peaks. The study documents a highly dynamic, double-layer fitness landscape of HCV when evolving in a monotonous cell culture environment. This information may help interpreting HCV fitness landscapes in complex in vivo environments.IMPORTANCEThe study provides for the first time the fitness landscape of a virus in the course of its adaptation to a cell culture environment, in absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer fitness distribution with an ample basal platform, and a lower number of protruding, high fitness peaks. This landscape structure offers potential benefits for virus resilience to mutational inputs.


Hepatology ◽  
2006 ◽  
Vol 44 (6) ◽  
pp. 1626-1634 ◽  
Author(s):  
Muriel Lavie ◽  
Cécile Voisset ◽  
Ngoc Vu-Dac ◽  
Virginie Zurawski ◽  
Gilles Duverlie ◽  
...  

2007 ◽  
Vol 88 (9) ◽  
pp. 2495-2503 ◽  
Author(s):  
David Delgrange ◽  
André Pillez ◽  
Sandrine Castelain ◽  
Laurence Cocquerel ◽  
Yves Rouillé ◽  
...  

Recently, the characterization of a cell culture system allowing the amplification of an authentic virus, named hepatitis C virus cell culture (HCVcc), has been reported by several groups. To obtain higher HCV particle productions, we investigated the potential effect of some amino acid changes on the infectivity of the JFH-1 isolate. As a first approach, successive infections of naïve Huh-7 cells were performed until high viral titres were obtained, and mutations that appeared during this selection were identified by sequencing. Only one major modification, N534K, located in the E2 glycoprotein sequence was found. Interestingly, this mutation prevented core glycosylation of E2 site 6. In addition, JFH-1 generated with this modification facilitated the infection of Huh-7 cells. In a second approach to identify mutations favouring HCVcc infectivity, we exploited the observation that a chimeric virus containing the genotype 1a core protein in the context of JFH-1 background was more infectious than wild-type JFH-1 isolate. Sequence alignment between JFH-1 and our chimera, led us to identify two major positions, 172 and 173, which were not occupied by similar amino acids in these two viruses. Importantly, higher viral titres were obtained by introducing these residues in the context of wild-type JFH-1. Altogether, our data indicate that a more robust production of HCVcc particles can be obtained by introducing a few specific mutations in JFH-1 structural proteins.


2020 ◽  
Vol 295 (21) ◽  
pp. 7179-7192 ◽  
Author(s):  
Rob J. Center ◽  
Irene Boo ◽  
Lilian Phu ◽  
Joey McGregor ◽  
Pantelis Poumbourios ◽  
...  

The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture–derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor–binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture–derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.


2006 ◽  
Vol 44 (01) ◽  
Author(s):  
T von Hahn ◽  
M Flint ◽  
BD Lindenbach ◽  
A Boullier ◽  
O Quehenberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document