Structure, Cr-chemistry, and age of the Border Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex

Author(s):  
Timothy M. Kusky ◽  
Adam Glass ◽  
Robert Tucker
Geosphere ◽  
2021 ◽  
Author(s):  
George L. Guice ◽  
Michael R. Ackerson ◽  
Robert M. Holder ◽  
Freya R. George ◽  
Joseph F. Browning-Hanson ◽  
...  

In the Table 3 note and captions of Figures 8 and 9, the equation Fe2+# = molar Fe2+/[Mg+Fe2++Fe3+] is incorrect. It should instead be Fe2+# = molar Fe2+/[Mg+Fe2+].


Geosphere ◽  
2021 ◽  
Author(s):  
George L. Guice ◽  
Michael R. Ackerson ◽  
Robert M. Holder ◽  
Freya R. George ◽  
Joseph F. Browning-Hanson ◽  
...  

Suprasubduction zone (SSZ) ophiolites of the northern Appalachians (eastern North America) have provided key constraints on the fundamental tectonic processes responsible for the evolution of the Appalachian orogen. The central and southern Appalachians, which extend from southern New York to Alabama (USA), also contain numerous ultra- mafic-mafic bodies that have been interpreted as ophiolite fragments; however, this interpretation is a matter of debate, with the origin(s) of such occurrences also attributed to layered intrusions. These disparate proposed origins, alongside the range of possible magmatic affinities, have varied potential implications for the magmatic and tectonic evolution of the central and southern Appalachian orogen and its relationship with the northern Appalachian orogen. We present the results of field observations, petrography, bulk-rock geochemistry, and spinel mineral chemistry for ultramafic portions of the Baltimore Mafic Complex, which refers to a series of ultramafic-mafic bodies that are discontinuously exposed in Maryland and southern Pennsylvania (USA). Our data indicate that the Baltimore Mafic Complex comprises SSZ ophiolite fragments. The Soldiers Delight Ultramafite displays geochemical characteristics—including highly depleted bulk-rock trace element patterns and high Cr# of spinel—characteristic of subduction-related mantle peridotites and serpentinites. The Hollofield Ultramafite likely represents the “layered ultramafics” that form the Moho. Interpretation of the Baltimore Mafic Complex as an Iapetus Ocean–derived SSZ ophiolite in the central Appalachian orogen raises the possibility that a broadly coeval suite of ophiolites is preserved along thousands of kilometers of orogenic strike.


2020 ◽  
Author(s):  
G.L. Guice ◽  
et al.

<div>Excel file containing bulk-rock and mineral chemical data, including standard data and precision calculations.<br></div>


2020 ◽  
Author(s):  
G.L. Guice ◽  
et al.

<div>Excel file containing bulk-rock and mineral chemical data, including standard data and precision calculations.<br></div>


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2021 ◽  
Vol 6 (1) ◽  
pp. 50-54
Author(s):  
Jamal Tarrah ◽  
Kurt Mengel ◽  
Zahra Abedpour
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document