scholarly journals Tectonic influence on axial-transverse sediment routing in the Denver Basin

2022 ◽  
Author(s):  
Glenn R. Sharman ◽  
Daniel F. Stockli ◽  
Peter Flaig ◽  
Robert G. Raynolds ◽  
Marieke Dechesne ◽  
...  

ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.

2016 ◽  
Author(s):  
Viridis M. Miranda Berrocales ◽  
◽  
Glenn R. Sharman ◽  
Jacob A. Covault ◽  
Daniel F. Stockli

2021 ◽  
pp. 1-18
Author(s):  
W.J. Davis ◽  
M. Sanborn-Barrie ◽  
R.G. Berman ◽  
S. Pehrsson

Depositional ages and provenance of metasedimentary rocks provide constraints on the architecture of the interface between the Slave and Rae cratons and processes related to the Thelon Orogen. Clastic rocks analysed from the central Thelon tectonic zone are Paleoproterozoic in age and not remnants of the Archean Yellowknife Supergroup (Slave Province), as originally considered. Two assemblages are recognized. An older clastic assemblage deposited after 2.09 Ga contains detrital zircon age modes of 2.3 and 2.17 Ga, with subordinate Neoarchean and Paleoarchean detritus. Its deposition is interpreted to predate Thelon magmatic activity given that (1) it lacks ca. 2.01–1.97 Ga detritus of Thelon magmatic origin, and (2) correlative clastic rocks occur as inclusions in Thelon plutons and contain ca. 2.0 Ga metamorphic monazite. This assemblage is correlative with both the Mary Frances and Rutledge River groups, establishing a >800 km long basin at ca. 2.1 Ga that received detritus from the western Rae and (or) Buffalo Head terrane(s). Separation from the Slave craton at this time is consistent with the absence of any Slave-affinity detritus. A younger assemblage deposited after 1.95 Ga and prior to 1.91 Ga contains mainly 2.02–1.95 Ga detrital zircon, age modes comparable with adjacent Thelon convergent-margin plutonic rocks. The younger assemblage records deposition of the uplifted and eroded Thelon magmatic arc in an intermontane or foreland basin setting during the later stages of post-collisional convergence. These U–Pb zircon data support a tectonic model for western Laurentia that reconciles differences between the Thelon and Taltson magmatic zones involving ca. 2.1 Ga rifting, ca. 2.01–1.97 Ga convergence, followed by <1.95 Ga thrust-driven exhumation.


2011 ◽  
Vol 501 (1-4) ◽  
pp. 17-27 ◽  
Author(s):  
Dominique Cluzel ◽  
Christopher J. Adams ◽  
Pierre Maurizot ◽  
Sébastien Meffre

Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1774-1808 ◽  
Author(s):  
Stephen E. Box ◽  
Susan M. Karl ◽  
James V. Jones ◽  
Dwight C. Bradley ◽  
Peter J. Haeussler ◽  
...  

Abstract The Kahiltna assemblage in the western Alaska Range consists of deformed Upper Jurassic and Cretaceous clastic strata that lie between the Alexander-Wrangellia-Peninsular terrane to the south and the Farewell and other pericratonic terranes to the north. Differences in detrital zircon populations and sandstone petrography allow geographic separation of the strata into two different successions, each consisting of multiple units, or petrofacies, with distinct provenance and lithologic characteristics. The northwestern succession was largely derived from older, inboard pericratonic terranes and correlates along strike to the southwest with the Kuskokwim Group. The southeastern succession is characterized by volcanic and plutonic rock detritus derived from Late Jurassic igneous rocks of the Alexander-Wrangellia-Peninsular terrane and mid- to Late Cretaceous arc-related igneous rocks and is part of a longer belt to the southwest and northeast, here named the Koksetna-Clearwater belt. The two successions remained separate depositional systems until the Late Cretaceous, when the northwestern succession overlapped the southeastern succession at ca. 81 Ma. They were deformed together ca. 80 Ma by southeast-verging fold-and-thrust–style deformation interpreted to represent final accretion of the Alexander-Wrangellia-Peninsular terrane along the southern Alaska margin. We interpret the tectonic evolution of the Kahiltna successions as a progression from forearc sedimentation and accretion in a south-facing continental magmatic arc to arrival and partial underthrusting of the back-arc flank of an active, south-facing island-arc system (Alexander-Wrangellia-Peninsular terrane). A modern analogue is the ongoing collision and partial underthrusting of the Izu-Bonin-Marianas island arc beneath the Japan Trench–Nankai Trough on the east side of central Japan.


1999 ◽  
Vol 11 (3) ◽  
pp. 332-337 ◽  
Author(s):  
Simon A. Lomas ◽  
Richard V. Dingle

A prominent volcaniclastic channel sandstone deposited by a landward-flowing sediment gravity flow is described from the Maastrichtian of Snow Hill Island in the northern Larsen Basin. The characteristics of this petrographically distinct event deposit appear to indicate a volcanic source to the east of Snow Hill Island, well away from the magmatic arc landmass which sourced the bulk of the Larsen Basin fill, suggesting minor off-axis intrabasinal volcanism in Maastrichtian to Paleogene times.


Lithosphere ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 620-642 ◽  
Author(s):  
Zachary T. Sickmann ◽  
Theresa M. Schwartz ◽  
Matthew A. Malkowski ◽  
Stephen C. Dobbs ◽  
Stephan A. Graham

Abstract The Magallanes-Austral retroarc foreland basin of southernmost South America presents an excellent setting in which to examine interpretive methods for large detrital zircon data sets. The source regions for retroarc foreland basins generally, and the Magallanes-Austral Basin specifically, can be broadly divided into (1) the magmatic arc, (2) the fold-and-thrust belt, and (3) sources around the periphery of foreland flexural subsidence. In this study, we used an extensive detrital zircon data set (30 new, 87 previously published samples) that is complemented by a large modal provenance data set of 183 sandstone petrography samples (32 new, 151 previously published) and rare earth element geochemical analyses (130 previously published samples) to compare the results of empirical (multidimensional scaling) and interpretive (age binning based on source regions) treatments of detrital zircon data, ultimately to interpret the detailed evolution of sediment dispersal patterns and their tectonic controls in the Magallanes-Austral Basin. Detrital zircon sample groupings based on both a priori age binning and multidimensional scaling are required to maximize the potential of the Magallanes-Austral Basin data set. Multidimensional scaling results are sensitive to differences in major unimodal arc-related U-Pb detrital zircon ages and less sensitive to differences in multimodal, thrust belt–related age peaks. These sensitivities complicate basin-scale interpretations when data from poorly understood, less densely sampled sectors are compared to data from better-understood, more densely sampled sectors. Source region age binning alleviates these biases and compares well with multidimensional scaling results when samples from the less well-understood southern basin sector are excluded. Sample groupings generated by both multidimensional scaling and interpretive methods are also compatible with compositional provenance data. Together, this integration of provenance data and methods facilitates a detailed interpretation of sediment dispersal patterns and their tectonic controls for the Late Cretaceous to Eocene fill of the Magallanes-Austral retroarc foreland basin. We interpret that provenance signatures and dispersal patterns during the retroarc foreland phase were fundamentally controlled by conditions set by a predecessor extensional basin phase, including (1) variable magnitude of extension with latitude, (2) the composition of lithologies emplaced on the antecedent western flank, and (3) long-lasting structural discontinuities associated with early rifting that may have partitioned dispersal systems or controlled the location of long-lived drainage networks.


Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1943-1957 ◽  
Author(s):  
Lily J. Jackson ◽  
Brian K. Horton ◽  
Cristian Vallejo

Abstract Recognizing detrital contributions from sediment source regions is fundamental to provenance studies of active and ancient orogenic settings. Detrital zircon U-Pb geochronology of unconsolidated sands from modern rivers that have source catchments with contrasting bedrock signatures provides insight into the fidelity of U-Pb age signatures in discriminating tectonic provenance and downstream propagation of environmental signals. We present 1705 new detrital zircon U-Pb ages for 15 samples of unconsolidated river sands from 12 modern rivers over a large spatial extent of Ecuador (∼1°N–5°S and ∼79°–77°W). Results show distinctive U-Pb age distributions with characteristic zircon age populations for various tectonic provinces along the Andean convergent margin, including the forearc, magmatic arc, and internal (hinterland) and external (foreland) segments of the fold-thrust belt. (1) Forearc and magmatic arc (Western Cordillera) river sands are characterized by Neogene–Quaternary age populations from magmatic sources. (2) Rivers in the hinterland (Eastern Cordillera) segment of the Andean fold-thrust belt have substantial populations of Proterozoic and Paleozoic ages, representing upper Paleozoic–Mesozoic sedimentary and metasedimentary rocks of ultimate cratonic origin. (3) River sands in the frontal fold-thrust belt (Subandean Zone to Oriente Basin) show distinctive bimodal Jurassic age populations, a secondary Triassic population, and subordinate Early Cretaceous ages representative of Mesozoic plutonic and metamorphic bedrock. Detrital zircon U-Pb results from a single regional watershed (Rio Pastaza) spanning the magmatic arc to foreland basin show drastic downstream variations, including the downstream loss of magmatic arc and hinterland signatures and abrupt introduction and dominance of selected sources within the fold-thrust belt. Disproportionate contributions from Mesozoic crystalline metamorphic rocks, which form high-elevation, high-relief areas subject to focused precipitation and active tectonic deformation, are likely the product of focused erosion and high volumes of local sediment input from the frontal fold-thrust belt, leading to dilution of upstream signatures from the hinterland and magmatic arc.


2018 ◽  
Vol 55 (3) ◽  
pp. 119-140 ◽  
Author(s):  
Kajal Nair ◽  
John Singleton ◽  
Christopher Holm-Denoma ◽  
Sven Egenhoff

Pennsylvanian-Permian time in north-central Colorado corresponds with uplift of the Ancestral Front Range and deposition of the Fountain, Ingleside, and Lyons Formations along its flanks. In southwestern Colorado, deposition of the Molas and Hermosa Formations along the flanks of the Uncompahgre Highlands largely represents Pennsylvanian time. We present new detrital zircon U-Pb geochronology data for the Ingleside and Lyons Formations in north-central Colorado and the Molas and Hermosa Formations in southwestern Colorado to understand sediment provenance and dispersal patterns. We determined U-Pb ages using LA-ICPMS on 120-150 zircon grains from five sandstone samples collected from shallow marine and eolian facies within the Ingleside, Lyons, Molas, and Hermosa Formations. All sandstone samples display a mixed Laurentian derivation, with age populations that record local and distal sediment sources. All samples also contain between 5% and 10% concordant Paleozoic-age zircon grains ranging from 330–490 Ma, coinciding with high magmatic flux during the Taconic and Acadian orogenies in the Appalachian orogen. Ultimate derivation from the Appalachians are also interpreted for zircon age populations ranging from 500-750 Ma and 1000-1300 Ma that likely originated from Pan-African and Grenville terranes respectively. This study detects the earliest documented appearance of Paleozoic zircons along the northern Ancestral Front Range, corresponding to deposition of the lower Ingleside Formation. We compare our data along the Front Range to previous detrital zircon studies from the underlying Fountain Formation to conclude that the Fountain-Ingleside transition was accompanied by a decrease in locally sourced detrital zircons, most likely marking the cessation of Ancestral Front Range uplift. Conversely, deposition across the Molas-Hermosa contact in southwestern Colorado was accompanied by an increase in locally-sourced detrital zircon grains, most likely marking the initiation of the Uncompahgre uplift.


Sign in / Sign up

Export Citation Format

Share Document