scholarly journals Timing and provenance of Paleoproterozoic supracrustal rocks in the central Thelon tectonic zone, Canada: implications for the tectonic evolution of western Laurentia from ca. 2.1 to 1.9 Ga

2021 ◽  
pp. 1-18
Author(s):  
W.J. Davis ◽  
M. Sanborn-Barrie ◽  
R.G. Berman ◽  
S. Pehrsson

Depositional ages and provenance of metasedimentary rocks provide constraints on the architecture of the interface between the Slave and Rae cratons and processes related to the Thelon Orogen. Clastic rocks analysed from the central Thelon tectonic zone are Paleoproterozoic in age and not remnants of the Archean Yellowknife Supergroup (Slave Province), as originally considered. Two assemblages are recognized. An older clastic assemblage deposited after 2.09 Ga contains detrital zircon age modes of 2.3 and 2.17 Ga, with subordinate Neoarchean and Paleoarchean detritus. Its deposition is interpreted to predate Thelon magmatic activity given that (1) it lacks ca. 2.01–1.97 Ga detritus of Thelon magmatic origin, and (2) correlative clastic rocks occur as inclusions in Thelon plutons and contain ca. 2.0 Ga metamorphic monazite. This assemblage is correlative with both the Mary Frances and Rutledge River groups, establishing a >800 km long basin at ca. 2.1 Ga that received detritus from the western Rae and (or) Buffalo Head terrane(s). Separation from the Slave craton at this time is consistent with the absence of any Slave-affinity detritus. A younger assemblage deposited after 1.95 Ga and prior to 1.91 Ga contains mainly 2.02–1.95 Ga detrital zircon, age modes comparable with adjacent Thelon convergent-margin plutonic rocks. The younger assemblage records deposition of the uplifted and eroded Thelon magmatic arc in an intermontane or foreland basin setting during the later stages of post-collisional convergence. These U–Pb zircon data support a tectonic model for western Laurentia that reconciles differences between the Thelon and Taltson magmatic zones involving ca. 2.1 Ga rifting, ca. 2.01–1.97 Ga convergence, followed by <1.95 Ga thrust-driven exhumation.

Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1943-1957 ◽  
Author(s):  
Lily J. Jackson ◽  
Brian K. Horton ◽  
Cristian Vallejo

Abstract Recognizing detrital contributions from sediment source regions is fundamental to provenance studies of active and ancient orogenic settings. Detrital zircon U-Pb geochronology of unconsolidated sands from modern rivers that have source catchments with contrasting bedrock signatures provides insight into the fidelity of U-Pb age signatures in discriminating tectonic provenance and downstream propagation of environmental signals. We present 1705 new detrital zircon U-Pb ages for 15 samples of unconsolidated river sands from 12 modern rivers over a large spatial extent of Ecuador (∼1°N–5°S and ∼79°–77°W). Results show distinctive U-Pb age distributions with characteristic zircon age populations for various tectonic provinces along the Andean convergent margin, including the forearc, magmatic arc, and internal (hinterland) and external (foreland) segments of the fold-thrust belt. (1) Forearc and magmatic arc (Western Cordillera) river sands are characterized by Neogene–Quaternary age populations from magmatic sources. (2) Rivers in the hinterland (Eastern Cordillera) segment of the Andean fold-thrust belt have substantial populations of Proterozoic and Paleozoic ages, representing upper Paleozoic–Mesozoic sedimentary and metasedimentary rocks of ultimate cratonic origin. (3) River sands in the frontal fold-thrust belt (Subandean Zone to Oriente Basin) show distinctive bimodal Jurassic age populations, a secondary Triassic population, and subordinate Early Cretaceous ages representative of Mesozoic plutonic and metamorphic bedrock. Detrital zircon U-Pb results from a single regional watershed (Rio Pastaza) spanning the magmatic arc to foreland basin show drastic downstream variations, including the downstream loss of magmatic arc and hinterland signatures and abrupt introduction and dominance of selected sources within the fold-thrust belt. Disproportionate contributions from Mesozoic crystalline metamorphic rocks, which form high-elevation, high-relief areas subject to focused precipitation and active tectonic deformation, are likely the product of focused erosion and high volumes of local sediment input from the frontal fold-thrust belt, leading to dilution of upstream signatures from the hinterland and magmatic arc.


2022 ◽  
Author(s):  
Glenn R. Sharman ◽  
Daniel F. Stockli ◽  
Peter Flaig ◽  
Robert G. Raynolds ◽  
Marieke Dechesne ◽  
...  

ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Julie C. Fosdick ◽  
R. A. VanderLeest ◽  
J. E. Bostelmann ◽  
J. S. Leonard ◽  
R. Ugalde ◽  
...  

Abstract New detrital zircon U-Pb geochronology data from the Cenozoic Magallanes-Austral Basin in Argentina and Chile ~51° S establish a revised chronostratigraphy of Paleocene-Miocene foreland synorogenic strata and document the rise and subsequent isolation of hinterland sources in the Patagonian Andes from the continental margin. The upsection loss of zircons derived from the hinterland Paleozoic and Late Jurassic sources between ca. 60 and 44 Ma documents a major shift in sediment routing due to Paleogene orogenesis in the greater Patagonian-Fuegian Andes. Changes in the proportion of grains from hinterland thrust sheets, comprised of Jurassic volcanics and Paleozoic metasedimentary rocks, provide a trackable signal of long-term shifts in orogenic drainage divide and topographic isolation due to widening of the retroarc fold-thrust belt. The youngest detrital zircon U-Pb ages confirm timing of Maastrichtian-Eocene strata but require substantial age revisions for part of the overlying Cenozoic basinfill during the late Eocene and Oligocene. The upper Río Turbio Formation, previously mapped as middle to late Eocene in the published literature, records a newly recognized latest Eocene-Oligocene (37-27 Ma) marine incursion along the basin margin. We suggest that these deposits could be genetically linked to the distally placed units along the Atlantic coast, including the El Huemul Formation and the younger San Julián Formation, via an eastward deepening within the foreland basin system that culminated in a basin-wide Oligocene marine incursion in the Southern Andes. The overlying Río Guillermo Formation records onset of tectonically generated coarse-grained detritus ca. 24.3 Ma and a transition to the first fully nonmarine conditions on the proximal Patagonian platform since Late Cretaceous time, perhaps signaling a Cordilleran-scale upper plate response to increased plate convergence and tectonic plate reorganization.


Author(s):  
Xu Han ◽  
Jin-Gen Dai ◽  
Jie Lin ◽  
Shi-Ying Xu ◽  
Bo-Rong Liu ◽  
...  

Reconstruction of Cretaceous geological evolution of Tibetan Plateau growth is critical for assessing the effect of India-Asia collision on the formation of its high elevation. However, Cretaceous topographic evolution and geodynamic mechanism in northern Lhasa remain ambiguous. Here we present results from sedimentology, zircon U-Pb ages, and detrital Cr-spinel composition of the Tangza Formation in the western part of northern Lhasa. Sedimentary lithofacies document that orbitolinid foraminifera−limestone beds were deposited in a shallow-marine setting, while clastic rocks accumulated in an alluvial fan during the middle Cretaceous. Zircon U-Pb ages of interbedded volcanic rocks place a robust constraint on the initiation of clastic rock deposition at ca. 106 Ma. Sandstones are enriched lithic fragments with abundant volcanic grains. U-Pb ages of detrital zircon display a prominent age population at 101−130 Ma with a 120 Ma peak. These data indicate that the clastic rocks were mainly derived from northern Lhasa, including an Early Cretaceous magmatic arc. Sedimentary and provenance characteristics are most consistent with deposition in a local foreland basin. The activation of south-vergent local thrusting may be responsible for loading of the Tangza foreland basin. This thrust faulting may be associated with crustal shortening induced by the continuous convergence of Lhasa and Qiangtang since collision initiated during the Early Cretaceous. The initial uplift of western and central parts of northern Lhasa and eastern Gangdese arc occurred at ca. 106 Ma, while the widespread uplift of northern and central Lhasa probably initiated at ca. 92 Ma. The mid−Late Cretaceous uplift in Lhasa was significantly earlier than the early Cenozoic India-Asia collision.


1998 ◽  
Vol 35 (2) ◽  
pp. 175-183 ◽  
Author(s):  
D E Boerner ◽  
J A Craven ◽  
R D Kurtz ◽  
G M Ross ◽  
F W Jones

The Great Falls Tectonic Zone is generally considered to be the boundary between the Archean Hearne and Wyoming provinces. Although completely buried beneath the western Canadian sedimentary basin, the zone can be studied indirectly through variations in Phanerozoic sedimentation patterns, faulting, basement geochronology, and xenoliths, and with geophysical remote sensing methods. While tectonically active ca. 1.8 Ga and clearly truncating the potential field fabrics of Wyoming Province and Medicine Hat Block, the Great Falls Tectonic Zone lacks a colinear magmatic arc, suggesting that the Hearne-Wyoming juxtaposition did not involve subduction of oceanic lithosphere. Furthermore, electromagnetic studies fail to detect a response that can be interpreted as a plate-edge foreland basin, typical of exposed Proterozoic suture zones. The only conductivity anomaly associated with the zone is weak and appears at depths exceeding 20 km, well below the top of the Proterozoic basement. Taken together, these observations suggest the Great Falls Tectonic Zone may be better interpreted as a reactivated Archean(?) intracontinental shear zone rather than a Proterozoic age suture between Archean provinces.


2019 ◽  
Vol 156 (11) ◽  
pp. 1949-1964 ◽  
Author(s):  
Katarzyna Walczak ◽  
Simon Cuthbert ◽  
Ellen Kooijman ◽  
Jarosław Majka ◽  
Matthijs A. Smit

AbstractThe first find of microdiamond in the Nordøyane ultra-high-pressure (UHP) domain of the Western Gneiss Region (WGR) of the Scandinavian Caledonides reshaped tectonic models for the region. Nevertheless, in spite of much progress regarding the meaning and significance of this find, the history of rock that the diamonds were found in is complex and still largely ambiguous. To investigate this, we report U–Pb zircon ages obtained from the exact crushed sample material in which metamorphic diamond was first found. The grains exhibit complicated internal zoning with distinct detrital cores overgrown by metamorphic rims. The cores yielded a range of ages from the Archaean to the late Neoproterozoic / early Cambrian. This detrital zircon age spectrum is broadly similar to detrital signatures recorded by metasedimentary rocks of the Lower and Middle allochthons elsewhere within the orogen. Thus, our dating results support the previously proposed affinity of the studied gneiss to the Seve–Blåhø Nappe of the Middle Allochthon. Metamorphic rims yielded a well-defined peak at 447 ± 2 Ma and a broad population that ranges between c. 437 and 423 Ma. The data reveal a prolonged metamorphic history of the Fjørtoft gneiss that is far more complex then would be expected for a UHP rock that has seen a single burial and exhumation cycle. The data are consistent with a model involving multiple such cycles, which would provide renewed support for the dunk tectonics model that has been postulated for the region.


Sign in / Sign up

Export Citation Format

Share Document