sediment gravity flow
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Donald N. Christie ◽  
Frank J. Peel ◽  
Gillian M. Apps ◽  
David “Stan” Stanbrook

The stratal architecture of deep-water minibasins is dominantly controlled by the interplay of two factors, structure growth and sediment supply. In this paper we explore the utility of a reduced-complexity, fast computational method (Onlapse-2D) to simulate stratal geometry, using a process of iteration to match the model output to available subsurface control (well logs and 3D seismic data). This approach was used to model the Miocene sediments in two intersecting lines of section in a complex mini-basin in the deep-water Campeche Basin, offshore Mexico. A good first-pass match between model output and geological observations was obtained, allowing us to identify and separate the effects of two distinct phases of compressional folding and a longer-lasting episode of salt withdrawal/diapirism, and to determine the timing of these events. This modelling provides an indication of the relative contribution of background sedimentation (pelagic and hemipelagic) vs. sediment-gravity-flow deposition (e.g. turbidites) within each layer of the model. The inferred timing of the compressional events derived from the model is consistent with other geological observations within the basin. The process of iteration towards a best-fit model leaves significant but local residual mismatches at several levels in the stratigraphy; these correspond to surfaces with anomalous negative (erosional) or positive (constructive depositional) palaeotopography. We label these mismatch surfaces “informative discrepancies” because the magnitude of the mismatch allows us to estimate the geometry and magnitude of the local seafloor topography. Reduced-complexity simulation is shown to be a useful and effective approach, which, when combined with an existing seismic interpretation, provides insight into the geometry and timing of controlling processes, indicates the nature of the sediments (background vs. sediment-gravity-flow) and aids in the identification of key erosional or constructional surfaces within the stratigraphy.


2021 ◽  
Vol 22 (3) ◽  
pp. 177
Author(s):  
Abdul Fauzan Fathan Al-Hakim ◽  
Yan Rizal

Daerah Majalengka merupakan satu daerah di Jawa Barat yang sangat menarik untuk dilakukan kajian geologi baik yang berkaitan dengan sedimentologi, tektonik maupun paleontologi. Salah satu objek yang menarik untuk dikaji ulang adalah Formasi Citalang, dimana uraian tentang formasi ini masih banyak terdapat perbedaan tentang satuan batuan penyusunnya, umur dan lingkungan pengendapannya. Disini kajian tentang formasi Citalang ditinjau dari sedimentologinya.Formasi Citalang di daerah penelitian Desa Sidamukti, Kabupaten Majalengka, Provinsi Jawa Barat tersusun atas 6 satuan batuan, yaitu: perselingan batupasir dan konglomerat sisipan tuf, perselingan batupasir dan batulempung, perselingan batupasir dan konglomerat, batupasir sisipan batulanau, perselingan batupasir dan konglomerat dengan sisipan batulanau, serta perselingan batupasir dan batulanau. Dari pengukuran penampang stratigrafi lintasan terpilih didapatkan 10 litofasies yang secara keseluruhan dijumpai dalam masing-masing satuan batuan, berupa: Fine Mud  (Fm), Fine Silt Mud (Fsm), Massive Sandstone (Sm), Horizontal Sandstone (Sh), Low Angle Cross Lamination Sandstone (Sl), Ripple Cross Lamination Sandstone (Sr), Trough Cross Bed Sandstone (St), Gravel Matrix Supported Graded Bedding (Gmg), Gravel Clast Supported Graded Bedding (Gcg), Gravel Clast Supported Massive (Gcm). Elemen arsitektural yang terbentuk pada sistem pengendapan Formasi Citalang adalah  Gravel Bar and Bedforms (GB), Sandy Bedform (SB), dan Sediment Gravity Flow (SG), yang diinterpretasikan terjadi pada lingkungan pengendapan fluvial berupa sungai teranyam.Katakunci: Formasi Citalang, elemen arsitektur, fluvial, litofasies, sungai teranyam.


2021 ◽  
pp. 105378
Author(s):  
Youliang Feng ◽  
Caineng Zou ◽  
Jianzhong Li ◽  
Changsong Lin ◽  
Hongjun Wang ◽  
...  

2021 ◽  
Vol 91 (7) ◽  
pp. 751-772
Author(s):  
Roberto Tinterri ◽  
Andrea Civa

ABSTRACT The origin of laterally accreted deposits in ancient deep marine successions is often controversial. Indeed, not always do these features imply the occurrence of meanders or high-sinuosity turbidite channels, but they can be generated by other causes, such as sediment-gravity-flow dynamics controlled by the morphology of tectonically confined mini-basins. This work discusses laterally accreted deposits composed of sharp-based, normally graded beds in a very small tectonically controlled mini-basin. These beds, characterized by a well-defined asymmetrical cross-current facies tract, form well-developed lateral-accretion surfaces dipping in directions ranging between W and SW, and perpendicular to the paleocurrents directed towards the N. For this reason, these deposits have always been interpreted as point bars related to meandering channels. A new detailed stratigraphic framework and facies analysis have led to an alternative interpretation, namely that these deposits record lateral deflections of small volume, longitudinally segregated turbidite dense flows against a structurally controlled morphological high. This interpretation is also supported by a comparison to other tectonically controlled turbidite systems that are characterized by higher degrees of efficiency but show similar laterally accreted deposits and cross-current facies tracts.


2021 ◽  
Author(s):  
Fabian Tillmans ◽  
Robert L. Gawthorpe ◽  
Christopher A‐L. Jackson ◽  
Atle Rotevatn

2020 ◽  
Vol 37 (2) ◽  
pp. 61-90
Author(s):  
Shanmugam G

Abstract This review covers 135 years of research on gravity flows since the first reporting of density plumes in the Lake Geneva, Switzerland, by Forel (1885). Six basic types of gravity flows have been identified in subaerial and suaqueous environments. They are: (1) hyperpycnal flows, (2) turbidity currents, (3) debris flows, (4) liquefied/fluidized flows, (5) grain flows, and (6) thermohaline contour currents. The first five types are flows in which the density is caused by sediment in the flow, whereas in the sixth type, the density is caused by variations in temperature and salinity. Although all six types originate initially as downslope gravity flows, only the first five types are truly downslope processes, whereas the sixth type eventually becomes an alongslope process. (1) Hyperpycnal flows are triggered by river floods in which density of incoming river water is greater than the basin water. These flows  are confined to proximity of the shoreline. They transport mud, and they do not transport sand into the deep sea. There are no sedimentological criteria yet to identify hyperpycnites in the ancient sedimentary record.  (2) A turbidity current is a sediment-gravity flow with Newtonian rheology  and turbulent state in which sediment is supported by flow turbulence and from which deposition occurs through suspension settling. Typical turbidity currents can function as truly turbulent suspensions only when their sediment concentration by volume is below 9% or C < 9%. This requirement firmly excludes the existence of 'high-density turbidity currents'. Turbidites are recognized by their distinct normal grading in deep-water deposits.  (3) A debris flow (C: 25-100%) is a sediment-gravity flow with plastic rheology and laminar state from which deposition occurs through freezing en masse. The terms debris flow and mass flow are used interchangeably. General characteristics of muddy and sandy debrites are floating clasts, planar clast fabric, inverse grading, etc.  Most sandy deep-water deposits are sandy debrites and they comprise important petroleum reservoirs worldwide. (4) A liquefied/fluidized low (>25%) is a sediment-gravity flow in which sediment is supported by upward-moving intergranular fluid. They are commonly triggered by seismicity. Water-escape structures, dish and pillar structures, and SSDS are common. (5) A grain flow (C: 50-100%) is a sediment-gravity flow in which grains are supported by dispersive pressure caused by grain collision. These flows are common on the slip face of aeolian dunes. Massive sand and inverse grading are potential identification markers.  (6) Thermohaline contour currents originate in the Antarctic region due to shelf freezing and  the related increase in the density of cold saline (i.e., thermohaline) water. Although they begin their journey as downslope gravity flows, they eventually flow alongslope as contour currents. Hybridites are deposits that result from intersection of downslope gravity flows and alongslope contour currents. Hybridites mimic the "Bouma Sequence" with traction structures (Tb and Tc). Facies models of hyperpycnites, turbidites, and contourites  are obsolete. Of the six types of density flows, hyperpycnal flows and their deposits are the least understood.


Geology ◽  
2020 ◽  
Author(s):  
Jaco H. Baas ◽  
Jim Best ◽  
Jeff Peakall

Sediment gravity flows demonstrate a wide range of rheological behaviors, and past work has shown how transformations between flow types generate spatiotemporal changes in the resultant sedimentary successions. We used the geometrical characteristics of a single climbing ripple to demonstrate how such flows can transform from a turbulent to a quasi-laminar plug flow, with the transitional clay flow sequence being manifested by abnormally large heterolithic sand-clay current ripples with small backflow ripples, and then abundant clay deposition associated with smaller ripples. Analysis of ripple size, angle of climb, grain size, internal erosional surfaces, and soft-sediment deformation suggests that transformation in the rheological character of the sediment gravity flow was rapid, occurring over a period of tens of minutes, and thus probably over a spatial scale of hundreds of meters to several kilometers. Our study indicates how the character of flow transformation can be elucidated from the details of a small-scale sedimentary structure.


Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1149-1153
Author(s):  
Yang Peng ◽  
Cornel Olariu ◽  
Ronald J. Steel

Abstract Many modern deltas exhibit a compound geometry that consists of a shoreline clinoform and a larger subaqueous clinoform connected through a subaqueous platform. Despite the ubiquity of compound clinoforms in modern deltas, very few examples have been documented from the ancient sedimentary record. We present recognition criteria for shelf compound-clinoform systems in both tide- and wave-dominated deltas by integration of ancient and modern examples from multiple types of data. The compound clinothem can be identified by using a combination of: (1) the three-dimensional (3-D) configuration identified in bathymetric or seismic data, (2) bipartite stacked regressive units, consisting of a lower muddy coarsening-to-fining-upward (CUFU) or coarsening-upward (CU) unit (30–100 m thick) and an overlying sandier CU unit (5–30 m thick) (together they represent the subaqueous and shoreline clinoform pair), and (3) distinct facies described herein, though both types of delta have highly bioturbated mudstone and siltstone bottomsets. Tide-dominated deltas have muddy foresets with tidal scours containing tidal rhythmites or inclined heterolithic strata in the subaqueous clinothem overlain by river and tidal deposits of the shoreline clinothem. Wave-dominated deltas show mainly wave-enhanced sediment-gravity-flow (WSGF) beds and some thin hummocky/swaley cross-stratified (HCS/SCS) sandstones toward the top in the subaqueous muddy foreset, and upward-thickening HCS/SCS and trough/planar cross-bedded sandstones interbedded with siltstones in the shoreline clinothem. The subaqueous platform, which links the clinoform couplet, shows evidence of frequent tidal or wave reworking and redeposition. The platform in tide-dominated deltas is characterized by tide-generated heterolithic strata (e.g., bidirectional current-rippled and cross-stratified sandstones, spring and neap tidal bundles, tidal rhythmites) with occasional storm-wave–influenced strata. In contrast, the wave-dominated platform comprises small-scale swales with scours and mud clasts and some WSGF deposits. The proposed criteria can aid in the recognition of compound deltaic clinothems in other basins, particularly those with limited amounts and/or types of data.


Sign in / Sign up

Export Citation Format

Share Document