THE ROLE OF HOLORTHURIANS IN QUANTIFYING ECHINODERM MORPHOLOGY AND INTERPRETING BODY PLAN EVOLUTION

2016 ◽  
Author(s):  
Stephanie Bennett ◽  
◽  
Bradley Deline
Author(s):  
Sujian Tan ◽  
Pin Huan ◽  
Baozhong Liu

AbstractThe molecular mechanisms of dorsal-ventral (DV) patterning in Spiralia are poorly understood. The few available studies indicate that derived DV patterning mechanisms occurred in particular spiralian lineages and likely were related to the loss of Chordin gene. Here, a functional study of the first spiralian Chordin showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, thus revealing the first spiralian case that retains this conserved mechanism. We then showed that Chordin but not BMP2/4 transferred the positional information of the D-quadrant organizer to establish the BMP signaling gradient along the presumed DV axis. Further investigations on the molluscan embryos with influenced DV patterning suggested a role of BMP signaling in regulating the organization of the larval nervous system and indicated that the blastopore localization is correlated with the BMP signaling gradient. These findings provide insights into the evolution of animal DV patterning, the unique development mode of spiralians driven by the D-quadrant organizer, and the evolution of bilaterian body plans.


Development ◽  
1996 ◽  
Vol 122 (8) ◽  
pp. 2395-2403 ◽  
Author(s):  
B. Grbic ◽  
A.B. Bleecker

In this paper, we describe a late-flowering ecotype of Arabidopsis, Sy-0, in which the axillary meristems maintain a prolonged vegetative phase, even though the primary shoot apical meristem has already converted to reproductive development. This novel heterochronic shift in the development of axillary meristems results in the formation of aerial rosettes of leaves at the nodes of the primary shoot axis. We present evidence that the aerial-rosette phenotype arises due to the interaction between dominant alleles of two genes: ART, aerial rosette gene (on chromosome 5) and EAR, enhancer of aerial rosette (on chromosome 4): EAR has been tentatively identified as a new allele of the FRI locus. The possible role of these two genes in the conversion of shoot apical meristems to reproductive development is discussed.


2008 ◽  
Vol 363 (1496) ◽  
pp. 1503-1512 ◽  
Author(s):  
Ronald A Jenner ◽  
D.Timothy J Littlewood

Problematica are taxa that defy robust phylogenetic placement. Traditionally the term was restricted to fossil forms, but it is clear that extant taxa may be just as difficult to place, whether using morphological or molecular (nucleotide, gene or genomic) markers for phylogeny reconstruction. We discuss the kinds and causes of Problematica within the Metazoa, as well as criteria for their recognition and possible solutions. The inclusive set of Problematica changes depending upon the nature and quality of (homologous) data available, the methods of phylogeny reconstruction and the sister taxa inferred by their placement or displacement. We address Problematica in the context of pre-cladistic phylogenetics, numerical morphological cladistics and molecular phylogenetics, and focus on general biological and methodological implications of Problematica, rather than presenting a review of individual taxa. Rather than excluding Problematica from phylogeny reconstruction, as has often been preferred, we conclude that the study of Problematica is crucial for both the resolution of metazoan phylogeny and the proper inference of body plan evolution.


2018 ◽  
Vol 285 (1881) ◽  
pp. 20180296 ◽  
Author(s):  
Pei-Yun Cong ◽  
Thomas H. P. Harvey ◽  
Mark Williams ◽  
David J. Siveter ◽  
Derek J. Siveter ◽  
...  

Chancelloriids are an extinct group of spiny Cambrian animals of uncertain phylogenetic position. Despite their sponge-like body plan, their spines are unlike modern sponge spicules, but share several features with the sclerites of certain Cambrian bilaterians, notably halkieriids. However, a proposed homology of these ‘coelosclerites' implies complex transitions in body plan evolution. A new species of chancelloriid, Allonnia nuda , from the lower Cambrian (Stage 3) Chengjiang Lagerstätte is distinguished by its large size and sparse spination, with modified apical sclerites surrounding an opening into the body cavity. The sclerite arrangement in A. nuda and certain other chancelloriids indicates that growth involved sclerite addition in a subapical region, thus maintaining distinct zones of body sclerites and apical sclerites. This pattern is not seen in halkieriids, but occurs in some modern calcarean sponges. With scleritome assembly consistent with a sponge affinity, and in the absence of cnidarian- or bilaterian-grade features, it is possible to interpret chancelloriids as sponges with an unusually robust outer epithelium, strict developmental control of body axis formation, distinctive spicule-like structures and, by implication, minute ostia too small to be resolved in fossils. In this light, chancelloriids may contribute to the emerging picture of high disparity among early sponges.


2005 ◽  
Vol 83 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Thurston C Lacalli

Motile larvae figure prominently in a number of past scenarios for chordate and vertebrate origins, notably in the writings of Garstang, Berrill, and Romer. All three focus on the motile larva of a primitively sessile tunicate ancestor as a vertebrate progenitor; Garstang went further in deriving chordates themselves by neoteny from a yet more ancient larva of the dipleurula type. Yet the molecular evidence currently available shows convincingly that the part of the tunicate larva that persists to the adult expresses only a subset of the genes required to specify a complete bilaterian body axis, and essentially the same appears to be true of dipleurula larvae. Specifically, both are essentially heads without trunks. Hence, both are highly derived and as such are probably poor models for any real ancestor. A more convincing case can be made for a sequence of ancestral forms that throughout their evolution were active, motile organisms expressing a full complement of axial patterning genes. This implies a basal, ancestral form resembling modern enteropneusts, although a pelagic organism at a hemichordate level of complexity is also possible. A reassessment is thus required of the role played by adult and larval tunicates, and of larvae more generally, in chordate evolution. Tunicates need to be interpreted with caution, since the extreme degree of modification in the adult may have been accompanied by reductions to the larva. Dipleurula larvae may retain some ancestral features (e.g., of apical, oral, and anal organization), but are otherwise probably too specialized to be central players in chordate evolution. Garstang nevertheless remains a key figure in the history of evolutionary thought for his innovative ideas on the relation between ontogeny and phylogeny, and the way in which major innovations in morphology and body plan arise.


2014 ◽  
Vol 54 (4) ◽  
pp. 658-666 ◽  
Author(s):  
D. C. Lyons ◽  
M. Q. Martindale ◽  
M. Srivastava

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 859 ◽  
Author(s):  
Steven M. Hrycaj ◽  
Deneen M. Wellik

Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan.


Sign in / Sign up

Export Citation Format

Share Document