An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes

Development ◽  
1996 ◽  
Vol 122 (8) ◽  
pp. 2395-2403 ◽  
Author(s):  
B. Grbic ◽  
A.B. Bleecker

In this paper, we describe a late-flowering ecotype of Arabidopsis, Sy-0, in which the axillary meristems maintain a prolonged vegetative phase, even though the primary shoot apical meristem has already converted to reproductive development. This novel heterochronic shift in the development of axillary meristems results in the formation of aerial rosettes of leaves at the nodes of the primary shoot axis. We present evidence that the aerial-rosette phenotype arises due to the interaction between dominant alleles of two genes: ART, aerial rosette gene (on chromosome 5) and EAR, enhancer of aerial rosette (on chromosome 4): EAR has been tentatively identified as a new allele of the FRI locus. The possible role of these two genes in the conversion of shoot apical meristems to reproductive development is discussed.

2005 ◽  
Vol 83 (4) ◽  
pp. 343-349 ◽  
Author(s):  
Vojislava Grbić

Axillary and floral meristems are shoot meristems that initiate postembryonically. In Arabidopsis, axillary meristems give rise to branches during vegetative development while floral meristems give rise to flowers during reproductive development. This review compares the development of these meristems from their initiation at the shoot apical meristem up to the establishment of their specific developmental fates. Axillary and floral meristems originate from lateral primordia that form at flanks of the shoot apical meristem. Initial development of vegetative and reproductive primordia are similar, resulting in the formation of a morphologically defined primordium partitioned into adaxial and abaxial domains. The adaxial primordial domain is competent to form a meristem, while the abaxial domain correlates with the formation of a leaf. This review proposes that all primordia partition into domains competent to form the meristem and the leaf. According to this model, a vegetative primordium develops as leaf-bias while a reproductive primordium develops as meristem-bias.Key words: SHOOTMERISTEMLESS, LATERAL SUPPRESSOR, AINTEGUMENTA, adaxial primordial domain, abaxial primordial domain, shoot morphogenesis.


2006 ◽  
Vol 9 (5) ◽  
pp. 484-489 ◽  
Author(s):  
Eilon Shani ◽  
Osnat Yanai ◽  
Naomi Ori

2020 ◽  
Vol 21 (8) ◽  
pp. 2917 ◽  
Author(s):  
Zhihui Xue ◽  
Liya Liu ◽  
Cui Zhang

Plants retain the ability to produce new organs throughout their life cycles. Continuous aboveground organogenesis is achieved by meristems, which are mainly organized, established, and maintained in the shoot apex and leaf axils. This paper will focus on reviewing the recent progress in understanding the regulation of shoot apical meristem and axillary meristem development. We discuss the genetics of plant meristems, the role of plant hormones and environmental factors in meristem development, and the impact of epigenetic factors on meristem organization and function.


2007 ◽  
Vol 38 (6) ◽  
pp. 383-388 ◽  
Author(s):  
S. V. Nikolaev ◽  
A. V. Penenko ◽  
V. V. Lavreha ◽  
E. D. Mjolsness ◽  
N. A. Kolchanov

2011 ◽  
Vol 156 (2) ◽  
pp. 605-614 ◽  
Author(s):  
Nolan Ung ◽  
Shruti Lal ◽  
Harley M.S. Smith

2013 ◽  
Vol 55 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Elisabetta Di Giacomo ◽  
Giovanna Serino ◽  
Giovanna Frugis

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Benoît Landrein ◽  
Annamaria Kiss ◽  
Massimiliano Sassi ◽  
Aurélie Chauvet ◽  
Pradeep Das ◽  
...  

The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem.


Sign in / Sign up

Export Citation Format

Share Document