THE NEOTOMA PALEOECOLOGY DATABASE: REPRESENTATIONS OF GEOLOGICAL TIME AND GEOCHRONOLOGICAL DATA HOLDINGS

2017 ◽  
Author(s):  
John W. Williams ◽  
◽  
Eric Grimm ◽  
Simon Goring ◽  
Brad S. Singer
1877 ◽  
Vol 3 (76supp) ◽  
pp. 1212-1212
Author(s):  
T. Mellard Reade
Keyword(s):  

1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2017 ◽  
Author(s):  
Daniel Condon ◽  
◽  
Klaudia Kuiper ◽  
Leah E. Morgan ◽  
Paul R. Renne ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Caleb Forrest Town ◽  
◽  
Justin V. Strauss ◽  
Sean T. Kinney ◽  
Scott A. Maclennan ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew J. Biggin ◽  
Richard K. Bono ◽  
Domenico G. Meduri ◽  
Courtney J. Sprain ◽  
Christopher J. Davies ◽  
...  

AbstractA defining characteristic of the recent geomagnetic field is its dominant axial dipole which provides its navigational utility and dictates the shape of the magnetosphere. Going back through time, much less is known about the degree of axial dipole dominance. Here we use a substantial and diverse set of 3D numerical dynamo simulations and recent observation-based field models to derive a power law relationship between the angular dispersion of virtual geomagnetic poles at the equator and the median axial dipole dominance measured at Earth’s surface. Applying this relation to published estimates of equatorial angular dispersion implies that geomagnetic axial dipole dominance averaged over 107–109 years has remained moderately high and stable through large parts of geological time. This provides an observational constraint to future studies of the geodynamo and palaeomagnetosphere. It also provides some reassurance as to the reliability of palaeogeographical reconstructions provided by palaeomagnetism.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Scott Lidgard ◽  
Alan C. Love

AbstractDespite the iconic roles of coelacanths, cycads, tadpole shrimps, and tuataras as taxa that demonstrate a pattern of morphological stability over geological time, their status as living fossils is contested. We responded to these controversies with a recommendation to rethink the function of the living fossil concept (Lidgard and Love in Bioscience 68:760–770, 2018). Concepts in science do useful work beyond categorizing particular items and we argued that the diverse and sometimes conflicting criteria associated with categorizing items as living fossils represent a complex problem space associated with answering a range of questions related to prolonged evolutionary stasis. Turner (Biol Philos 34:23, 2019) defends the living concept against a variety of recent skeptics, but his criticism of our approach relies on a misreading of our main argument. This misreading is instructive because it brings into view the value of three central themes for rethinking the living fossil concept—the function of concepts in biology outside of categorization, the methodological importance of distinguishing parts and wholes in conceptualizing evolutionary phenomena, and articulating diverse explanatory goals associated with these phenomena.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 326
Author(s):  
Tae-Hyeon Kim ◽  
Seung-Gu Lee ◽  
Jae-Young Yu

Carbonate formations of the Cambro-Ordovician Period occur in the Taebaek and Jeongseon areas, located in the central–eastern part of the Korean Peninsula. This study analyzed the rare earth element (REE) contents and Sr–Nd isotope ratios in these carbonates to elucidate their depositional environment and diagenetic history. The CI chondrite-normalized REE patterns of the carbonates showed negative Eu anomalies (EuN/(SmN × GdN)1/2 = 0.50 to 0.81), but no Ce anomaly (Ce/Ce* = CeN/(LaN2 × NdN)1/3 = 1.01 ± 0.06). The plot of log (Ce/Ce*) against sea water depth indicates that the carbonates were deposited in a shallow-marine environment such as a platform margin. The 87Sr/86Sr ratios in both Taebaek and Jeongseon carbonates were higher than those in the seawater at the corresponding geological time. The 87Sr/86Sr ratios and the values of (La/Yb)N and (La/Sm)N suggest that the carbonates in the areas experienced diagenetic processes several times. Their 143Nd/144Nd ratios varied from 0.511841 to 0.511980. The low εNd values and high 87Sr/86Sr ratios in the carbonates may have resulted from the interaction with the hydrothermal fluid derived from the intrusive granite during the Cretaceous Period.


Sign in / Sign up

Export Citation Format

Share Document