ESTIMATING WATER CONTENTS OF BISHOP TUFF MAGMA FROM HYDROXYL CONCENTRATIONS IN FELDSPAR PHENOCRYSTS

2017 ◽  
Author(s):  
Adam Nordling ◽  
◽  
Elizabeth McTaggart ◽  
Elizabeth A. Johnson ◽  
Madison L. Myers ◽  
...  
Keyword(s):  
Author(s):  
Jens Konnerup-Madsen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Konnerup-Madsen, J. (2001). A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 159-166. https://doi.org/10.34194/ggub.v190.5187 _______________ Fluid inclusions in minerals from agpaitic nepheline syenites and hydrothermal veins in the Ilímaussaq complex and in similar agpaitic complexes on the Kola Peninsula, Russia, are dominated by hydrocarbon gases (predominantly methane) and hydrogen. Such volatile compositions differ considerably from those of most other igneous rocks and their formation and entrapment in minerals reflects low oxygen fugacities and a wide range of crystallisation temperatures extending to a low-temperature solidus. Their composition reflects initial low carbon contents and high water contents of the magma resulting in the exsolution of a waterrich CO2–H2O dominated vapour phase. Fractionation of chlorides into the vapour phase results in high salinities and the subsequent development of a heterogeneous vapour phase with a highly saline aqueous-rich fraction and a methane-dominated fraction, with preferential entrapment of the latter, possibly due to different wetting characteristics. The light stable isotope compositions support an abiogenic origin for the hydrocarbons in agpaitic nepheline syenite complexes.


1990 ◽  
Vol 54 (2) ◽  
pp. 555-557 ◽  
Author(s):  
Ralph G. Nash ◽  
M. Leroy Beall
Keyword(s):  

2017 ◽  
Author(s):  
Elizabeth McTaggart ◽  
◽  
Adam Nordling ◽  
Elizabeth A. Johnson ◽  
Madison L. Myers ◽  
...  

2017 ◽  
Author(s):  
Antonio M. Bird ◽  
◽  
Katherine A. Kelker ◽  
Elizabeth S. Brogden ◽  
Jeff Glazner ◽  
...  

2020 ◽  
Author(s):  
Julia Chen ◽  
◽  
Barbara Ratschbacher ◽  
Barbara Ratschbacher ◽  
Claire E. Bucholz ◽  
...  

Author(s):  
Karel Schrijver

This chapter describes how the first found exoplanets presented puzzles: they orbited where they should not have formed or where they could not have survived the death of their stars. The Solar System had its own puzzles to add: Mars is smaller than expected, while Venus, Earth, and Mars had more water—at least at one time—than could be understood. This chapter shows how astronomers worked through the combination of these puzzles: now we appreciate that planets can change their orbits, scatter water-bearing asteroids about, steal material from growing planets, or team up with other planets to stabilize their future. The special history of Jupiter and Saturn as a pair bringing both destruction and water to Earth emerged from the study of seventeenth-century resonant clocks, from the water contents of asteroids, and from experiments with supercomputers imposing the laws of physics on virtual worlds.


1993 ◽  
Vol 3 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Patricia Berjak ◽  
Christina W. Vertucci ◽  
N. W. Pammenter

AbstractThe effect of rate of dehydration was assessed for embryonic axes from mature seeds of Camellia sinensis and the desiccation sensitivity of axes of different developmental stages was estimated using electrolyte leakage. Rapidly (flash) dried excised axes suffered desiccation damage at lower water contents (0.4 g H2O (g DW)−1) than axes dried more slowly in the whole seed (0.9 g H2O (g DW)−1). It is possible that flash drying of isolated axes imposes a stasis on deteriorative reactions that does not occur during slower dehydration. Differential scanning calorimetry (DSC) of the axes indicated that the enthalpy of the melting and the amount of non-freezable water were similar, irrespective of the drying rate.Very immature axes that had completed morphogenesis and histodifferentiation only were more sensitive to desiccation (damage at 0.7 g H2O (g DW)−1) than mature axes or axes that were in the growth and reserve accumulation phase (damage at 0.4 g H2O (g DW)−1). As axes developed from maturity to germination, their threshold desiccation sensitivity increased to a higher level (1.3−1.4 g H2O (g DW)−1). For the very immature axes, enthalpy of the melting of tissue water was much lower, and the level of non-freezable water considerably higher, than for any other developmental stage studied.There were no marked correlations between desiccation sensitivity and thermal properties of water. Desiccation sensitivity appears to be related more to the degree of metabolic activity evidenced by ultrastructural characteristics than to the physical properties of water.


Author(s):  
Kirsten T. Wenzel ◽  
Michael Wiedenbeck ◽  
Jürgen Gose ◽  
Alexander Rocholl ◽  
Esther Schmädicke

AbstractThis study presents new secondary ion mass spectrometry (SIMS) reference materials (RMs) for measuring water contents in nominally anhydrous orthopyroxenes from upper mantle peridotites. The enstatitic reference orthopyroxenes from spinel peridotite xenoliths have Mg#s between 0.83 and 0.86, Al2O3 ranges between 4.02 and 5.56 wt%, and Cr2O3 ranges between 0.21 and 0.69 wt%. Based on Fourier-transform infrared spectroscopy (FTIR) characterizations, the water contents of the eleven reference orthopyroxenes vary from dry to 249 ± 6 µg/g H2O. Using these reference grains, a set of orthopyroxene samples obtained from variably altered abyssal spinel peridotites from the Atlantic and Arctic Ridges as well as from the Izu-Bonin-Mariana forearc region was analyzed by SIMS and FTIR regarding their incorporation of water. The major element composition of the sample orthopyroxenes is typical of spinel peridotites from the upper mantle, characterized by Mg#s between 0.90 and 0.92, Al2O3 between 1.66 and 5.34 wt%, and Cr2O3 between 0.62 and 0.96 wt%. Water contents as measured by SIMS range from 68 ± 7 to 261 ± 11 µg/g H2O and correlate well with Al2O3 contents (r = 0.80) and Cr#s (r. = -0.89). We also describe in detail an optimized strategy, employing both SIMS and FTIR, for quantifying structural water in highly altered samples such as abyssal peridotite. This approach first analyzes individual oriented grains by polarized FTIR, which provides an overview of alteration. Subsequently, the same grain along with others of the same sample is measured using SIMS, thereby gaining information about homogeneity at the hand sample scale, which is key for understanding the geological history of these rocks.


2021 ◽  
Vol 13 (4) ◽  
pp. 1759
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan

The availability and proper irrigation scheduling of water are some of the most significant limitations on citrus production in Florida. The proper volume of citrus water demand is vital in evaluating sustainable irrigation approaches. The current study aims to determine the amount of irrigation required to grow citrus trees at higher planting densities without detrimental impacts on trees’ water relation parameters. The study was conducted between November 2017 and September 2020 on young sweet orange (Citrus sinensis) trees budded on the ‘US-897’ (Cleopatra mandarin x Flying Dragon trifoliate orange) citrus rootstock transplanted in sandy soil at the Southwest Florida Research and Education Center (SWFREC) demonstration grove, near Immokalee, Florida. The experiment contained six planting densities, including 447, 598, and 745 trees per ha replicated four times, and 512, 717, and 897 trees per ha replicated six times. Each density treatment was irrigated at 62% or 100% during the first 15 months between 2017 and 2019 or one of the four irrigation rates (26.5, 40.5, 53, or 81%) based on the calculated crop water supplied (ETc) during the last 17 months of 2019–2020. Tree water relations, including soil moisture, stem water potential, and water supplied, were collected periodically. In addition, soil salinity was determined. During the first year (2018), a higher irrigation rate (100% ETc) represented higher soil water contents; however, the soil water content for the lower irrigation rate (62% ETc) did not represent biological stress. One emitter per tree regardless of planting density supported stem water potential (Ψstem) values between −0.80 and −0.79 MPa for lower and full irrigation rates, respectively. However, when treatments were adjusted from April 2019 through September 2020, the results substantially changed. The higher irrigation rate (81% ETc) represented higher soil water contents during the remainder of the study, the lower irrigation rate (26.5% ETc) represents biological stress as a result of stem water potential (Ψstem) values between −1.05 and −0.91 MPa for lower and higher irrigation rates, respectively. Besides this, increasing the irrigation rate from 26.5% to 81%ETc decreased the soil salinity by 33%. Although increasing the planting density from 717 to 897 trees per hectare reduced the water supplied on average by 37% when one irrigation emitter was used to irrigate two trees instead of one, applying an 81% ETc irrigation rate in citrus is more efficient and could be managed in commercial groves.


Sign in / Sign up

Export Citation Format

Share Document