scholarly journals LA-ICP-MS U-Pb dating and geochemical characterization of oil inclusion-bearing calcite cements: Constraints on primary oil migration in lacustrine mudstone source rocks

Author(s):  
Ao Su ◽  
Honghan Chen ◽  
Yue-xing Feng ◽  
Jian-xin Zhao

To date, few isotope age constraints on primary oil migration have been reported. Here we present U-Pb dating and characterization of two fracture-filling, oil inclusion-bearing calcite veins hosted in the Paleocene siliciclastic mudstone source rocks in Subei Basin, China. Deposition age of the mudstone formation was estimated to be ca. 60.2−58.0 Ma. The first vein consists of two major phases: a microcrystalline-granular (MG) calcite phase, and a blocky calcite phase, each showing distinctive petrographic features, rare earth element patterns, and carbon and oxygen isotope compositions. The early MG phase resulted from local mobilization of host carbonates, likely associated with disequilibrium compaction over-pressuring or tectonic extension, whereas the late-filling blocky calcite phase was derived from overpressured oil-bearing fluids with enhanced fluid-rock interactions. Vein texture and fluorescence characteristics reveal at least two oil expulsion events, the former represented by multiple bitumen veinlets postdating the MG calcite generation, and the latter marked by blue-fluorescing primary oil inclusions synchronous with the blocky calcite cementation. The MG calcite yields a laser ablation−inductively coupled plasma−mass spectrometry U-Pb age of 55.6 ± 1.4 Ma, constraining the earliest timing of the early oil migration event. The blocky calcite gives a younger U-Pb age of 47.8 ± 2.3 Ma, analytically indistinguishable from the U-Pb age of 46.5 ± 1.7 Ma yielded by the second calcite vein. These two ages define the time of the late oil migration event, agreeing well with the age estimate of 49.7−45.2 Ma inferred from fluid-inclusion homogenization temperature and published burial models. Thermodynamic modeling shows that the oil inclusions were trapped at ∼27.0−40.9 MPa, exceeding corresponding hydrostatic pressures (23.1−26.7 MPa), confirming mild-moderate overpressure created by oil generation-expulsion. This integrated study combining carbonate U-Pb dating and fluid-inclusion characterization provides a new approach for reconstructing pressure-temperature-composition-time points in petroleum systems.

2021 ◽  
Author(s):  
Ao Su ◽  
et al.

Table S1: LA-ICP-MS U-Pb contents (ppm), and 238U/206Pb-207Pb/206Pb ratios of the microcrystalline-granular calcite (MGC) and blocky calcite (BC) in vein samples FSX1-1 and FSX1-2; Table S2: LA-ICP-MS rare earth element (REE) data (ppm) for calcite cements in vein samples FSX1-1 and FSX1-2.


2021 ◽  
Author(s):  
Ao Su ◽  
et al.

Table S1: LA-ICP-MS U-Pb contents (ppm), and 238U/206Pb-207Pb/206Pb ratios of the microcrystalline-granular calcite (MGC) and blocky calcite (BC) in vein samples FSX1-1 and FSX1-2; Table S2: LA-ICP-MS rare earth element (REE) data (ppm) for calcite cements in vein samples FSX1-1 and FSX1-2.


2021 ◽  
pp. 1-9
Author(s):  
Alexander Ossanes de Souza ◽  
Emanueli do Nascimento da Silva ◽  
Camila Corrêa Pereira ◽  
Solange Cadore ◽  
Anderson Schwingel Ribeiro ◽  
...  

2006 ◽  
Vol 51 (23) ◽  
pp. 2885-2891 ◽  
Author(s):  
Xinhua Geng ◽  
Ansong Geng ◽  
Yongqiang Xiong ◽  
Jinzhong Liu ◽  
Haizu Zhang ◽  
...  

2014 ◽  
Vol 48 (1) ◽  
pp. 167-179 ◽  
Author(s):  
E. Marin ◽  
A. Padró ◽  
A. Miquel ◽  
Jose F. Garcia

2014 ◽  
Vol 29 (6) ◽  
pp. 1132-1137 ◽  
Author(s):  
Lucia D'Ulivo ◽  
Lu Yang ◽  
Yong-Lai Feng ◽  
John Murimboh ◽  
Zoltán Mester

Accurate quantitation and characterization of organometals are successfully achieved by splitting the gas chromatography (GC) flow to both an electron ionization mass spectrometer (EIMS) and an inductively coupled plasma mass spectrometer (ICPMS).


Author(s):  
Wenqing Huang ◽  
Pei Ni ◽  
Ting Shui ◽  
Junyi Pan ◽  
Mingsen Fan ◽  
...  

Abstract Primary rubies in the Ailao Shan of Yunnan Province, China, are found in three layers of marble. However, the origin and source rocks of placer rubies in the Yuanjiang area remains unclear. Trace element geochemistry and inclusion mineralogy within these materials can provide information on their petrogenesis and original source. Zircon, rutile, mica group minerals, titanite, and apatite group minerals were the main solid inclusions identified within the placer Yuanjiang rubies, along with other mineral inclusions such as pyrite, pyrrhotite, plagioclase group minerals, and scapolite group minerals. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements showed that the placer rubies are characterized by average values of Mg (31 ppmw), Ti (97 ppmw), V (77 ppmw), Cr (3326 ppmw), Fe (71 ppmw), and Ga (66ppmw). A trace-element oxide diagram, Fe values (<350 ppmw), and the mineral inclusion assemblage suggest marble sources for the placer ruby. Therefore, the Yuanjiang rubies (both primary and placer) are metamorphic, and this fits well with the observations that skarn and related minerals are mostly absent in this deposit. Yuanjiang rubies can be readily separated from the high-iron rubies of different geological types by their Fe content (<1000 ppmw). The discriminators Mg, Ga, Cr, V, Fe, and Ti have potential in separating Yuanjiang rubies from some other marble-hosted deposits, such as Snezhnoe. Nevertheless, geographic origin determination remains a challenge when considering the similarities in compositional features between the Yuanjiang rubies and rubies from some other marble-hosted deposits worldwide (e.g., Luc Yen). The presence of kaolinite group minerals and clusters of euhedral, prismatic zircon crystals in ruby suggest a Yuanjiang origin.


Sign in / Sign up

Export Citation Format

Share Document