Refining the Paleoproterozoic tectonothermal history of the Penokean Orogen: New U-Pb age constraints from the Pembine-Wausau terrane, Wisconsin, USA

Author(s):  
Jian-Wei Zi ◽  
Stephen Sheppard ◽  
Janet R. Muhling ◽  
Birger Rasmussen

An enduring problem in the assembly of Laurentia is uncertainty about the nature and timing of magmatism, deformation, and metamorphism in the Paleoproterozoic Wisconsin magmatic terranes, which have been variously interpreted as an intra-oceanic arc, foredeep or continental back-arc. Resolving these competing models is difficult due in part to a lack of a robust time-frame for magmatism in the terranes. The northeast part of the terranes in northern Wisconsin (USA) comprise mafic and felsic volcanic rocks and syn-volcanic granites thought to have been emplaced and metamorphosed during the 1890−1830 Ma Penokean orogeny. New in situ U-Pb geochronology of igneous zircon from the volcanic rocks (Beecher Formation), and from two tonalitic plutons (the Dunbar Gneiss and Newingham Tonalite) intruding the volcanic rocks, yielded crystallization ages ranging from 1847 ± 10 Ma to 1842 ± 7 Ma (95% confidence). Thus, these rocks record a magmatic episode that is synchronous with bimodal volcanism in the Wausau domain and Marshfield terrane farther south. Our results, integrated with published data into a time-space diagram, highlight two bimodal magmatic cycles, the first at 1890−1860 Ma and the second at 1845−1830 Ma, developed on extended crust of the Superior Craton. The magmatic episodes are broadly synchronous with volcanogenic massive sulfide mineralization and deposition of Lake Superior banded iron formations. Our data and interpretation are consistent with the Penokean orogeny marking west Pacific-style accretionary orogenesis involving lithospheric extension of the continental margin, punctuated by transient crustal shortening that was accommodated by folding and thrusting of the arc-back-arc system. The model explains the shared magmatic history of the Pembine-Wausau and Marshfield terranes. Our study also reveals an overprinting metamorphic event recorded by reset zircon and new monazite growth dated at 1775 ± 10 Ma suggesting that the main metamorphic event in the terranes is related to the Yavapai-interval accretion rather than the Penokean orogeny.

1995 ◽  
Vol 132 (5) ◽  
pp. 549-556 ◽  
Author(s):  
E. R. Phillips ◽  
R. P. Barnes ◽  
R. J. Merriman ◽  
J. D. Floyd

AbstractIn the northern part of the Southern Uplands, restricted volumes of basic igneous rocks occur at or near the base of the Ordovician sedimentary strata. These rocks have previously been interpreted as ocean-floor tholeiites representative of the subducted Iapetus oceanic plate, preserved as tectonic slivers in a fore-arc accretionary prism. The alternative, back-arc basin model proposed for the Southern Uplands on sedimentological evidence raises questions over the origin of these rocks. New geochemical data and previously published data clearly indicate that the volcanic material does not have a simple single source. The oldest (Arenig) volcanic rocks from the Moffat Shale Group associated with the Leadhills Fault include alkaline within-plate basalts and tholeiitic lavas which possibly display geochemical characteristics of midocean ridge basalts. In the northernmost occurrence, alkaline and tholeiitic basalts contained within the Caradoc Marchburn Formation are both of within-plate ocean island affinity. To the south, in the Gabsnout Burn area, the Moffat Shale Group contains lenticular bodies of dolerite and basalt which have characteristics of island-arc to transitional basalts. This complex association of basaltic volcanic rocks is, at the present time, difficult to reconcile with either a simple fore-arc or back-arc setting for the Southern Uplands. However, the increasing arc-related chemical influence on basic rock geochemistry towards the southeast may tentatively be used in support of a southern arc-terrane, and as a result, a back-arc situation for the Southern Uplands basin. An alternative is that these volcanic rocks may represent the local basement to the basin and include remnants of an arc precursor to the Southern Uplands basin.


2012 ◽  
Vol 49 (1) ◽  
pp. 166-188 ◽  
Author(s):  
Susan C. Johnson ◽  
Leslie R. Fyffe ◽  
Malcolm J. McLeod ◽  
Gregory R. Dunning

The Penobscot arc system of the northeastern Appalachians is an Early Cambrian to early Tremadocian (ca. 514–485 Ma) ensialic to ensimatic arc–back-arc complex that developed along the margin of the peri-Gondwanan microcontinent Ganderia. Remnants of this Paleozoic arc system are best preserved in the Exploits Subzone of central Newfoundland. Correlative rocks in southern New Brunswick are thought to occur in the ca. 514 Ma Mosquito Lake Road Formation of the Ellsworth Group and ca. 497–493 Ma Annidale Group; however in the past, the work that has been conducted on the latter has been of a preliminary nature. New data bearing on the age and tectonic setting of the Annidale Group provides more conclusive evidence for this correlation. The Annidale Group contains subalkaline, tholeiitic to transitional, basalts to basaltic andesites, picritic tuffs and calc-alkaline to tholeiitic felsic dome complexes that have geochemical signatures consistent with suprasubduction zone magmatism that was likely generated in a back-arc basin. New U–Pb ages establish that the Late Cambrian to Early Tremadocian Annidale Group and adjacent ca. 541 Ma volcanic rocks of the Belleisle Bay Group in the New River belt were affected by a period of younger magmatism ranging in age from ca. 479–467 Ma. This provides important constraints on the timing of tectonism in the area. A ca. 479 Ma age for the Stewarton Gabbro that stitches the faulted contact between the Annidale and Belleisle Bay groups, demonstrates that structural interleaving and juxtaposition occurred during early Tremadocian time, which closely coincides with the timing of obduction of Penobscottian back-arc ophiolites onto the Ganderian margin in Newfoundland.


2019 ◽  
Vol 483 (1) ◽  
pp. 517-554 ◽  
Author(s):  
Kathryn Metcalf ◽  
Paul Kapp

AbstractThe history of pre-Cretaceous subduction accretion and erosion along the Yarlung Suture Zone remains poorly constrained. We present new geological mapping along c. 200 km of the suture zone, 4881 detrital zircon U–Pb ages, and sandstone petrography for the subduction complex and Tethyan Himalayan strata. We provide the first documentation of the c. 158 Ma marine Xiazha Formation, which contains volcanic clasts of intermediate to felsic volcanic rocks and ooids with both calcareous and volcanic cores. Based on our new data and synthesis of published data, we present a model in which the Zedong arc represents the southwards migration of the Gangdese arc onto a forearc ophiolite that was generated proximal to the southern Asian margin during Neotethyan slab rollback at 160–150 Ma. This contrasts with previous suggestions that the Zedong arc, Yarlung ophiolites and subduction complex rocks developed above an intra-oceanic subduction zone thousands of kilometres south of Asia. Although Gangdese arc magmatism began in the Middle Triassic, the only forearc units preserved are 160 Ma until collision between the Xigaze forearc basin and Tethyan Himalaya at c. 59 Ma. This suggests that almost all pre-Cretaceous forearc assemblages have been removed by subduction erosion at the trench.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 442
Author(s):  
Reinhard Werner ◽  
Boris Baranov ◽  
Kaj Hoernle ◽  
Paul van den Bogaard ◽  
Folkmar Hauff ◽  
...  

Here we present the first radiometric age and geochemical (major and trace element and isotope) data for samples from the Hydrographer Ridge, a back arc volcano of the Kurile Island Arc, and a newly discovered chain of volcanoes (“Sonne Volcanoes”) on the northwestern continental slope of the Kurile Basin on the opposite side of the arc. The 40Ar/39Ar age and geochemical data show that Hydrographer Ridge (3.2–3.3 Ma) and the “Sonne Volcanoes” (25.3–25.9 Ma) have very similar trace element and isotope characteristics to those of the Kurile Island Arc, indicating derivation from a common magma source. We conclude that the age of the “Sonne Volcanoes” marks the time of opening of the Kurile Basin, implying slow back arc spreading rates of 1.3–1.8 cm/y. Combined with published data from the Kurile fore arc, our data suggest that the processes of subduction, Kurile Basin opening and frontal arc extension occurred synchronously and that extension in the rear part and in the frontal part of the Kurile Island Arc must have been triggered by the same mechanism.


1997 ◽  
Vol 40 (3) ◽  
Author(s):  
G. Serri

The petrogenesis and time/space distribution of the magmatism associated with the formation of the Northern and Southern Tyrrhenian basins, together with the directions and ages of lithospheric extension and/or spreading north and south of the 410N discontinuity, show that the two arc/back-arc systems have undergone a different structural evolution at least since the middle Miocene (Langhian). The geochemical components involved in the genesis of the heterogeneities of the mantle sources of this magmatism require two separate, compositionally different slabs: 1) an old oceanic (Ionian) lithosphere still seismically active below the Calabrian arc and the Southern Tyrrhenian region; 2) an almost seismically inactive continental (Adriatic) lithosphere which carried large amounts of upper crustal materials within the upper mantle under the NW Roman Province/Tuscan/Northern Tyrrhenian region. The proposed geodynamic models require: 1) for the Northern Tyrrhenian/Northern Apenninic arc/back-arc system, the delamination and foundering of the Adriatic continental lithosphere as a consequence of the continental collision between the Corsica block and the Adriatic continental margin. This delamination process, which is still ongoing, probably started in the early-middle Miocene, but earlier than 15-14 Ma, as indicated by the age and petrogenesis of the first documented magmatic episode (the Sisco lamproite) of the Northern Apennine orogenesis; 2) for the Southern Tyrrhenian/Southern Apenninic-Calabrian arc/back-arc system, the roll-back subduction and back-arc extension driven by gravitational sinking of the Ionian oceanic subducted lithosphere. This process started after the end of the arc volcanism of Sardinia (about 13 Ma) but earlier than the first recorded episode of major rifting (about 9 Ma) in the Southern Tyrrhenian back-arc basin.


2015 ◽  
Vol 52 (7) ◽  
pp. 466-494 ◽  
Author(s):  
Tony Barresi ◽  
J.L. Nelson ◽  
J. Dostal ◽  
R. Friedman

Understanding the development of island arcs that accreted to the North American craton is critical to deciphering the complex geological history of the Canadian Cordillera. In the case of the Hazelton arc (part of the Stikine terrane, or Stikinia) in northwestern British Columbia, understanding arc evolution also bears on the formation of spatially associated porphyry Cu–Au, epithermal, and volcanogenic massive sulfide deposits. The Hazelton Group is a regionally extensive, long-lived, and exceptionally thick Upper Triassic to Middle Jurassic volcano-sedimentary succession considered to record a successor arc that was built upon the Paleozoic and Triassic Stikine and Stuhini arcs. In central Stikinia, near Terrace, British Columbia, the lower Hazelton Group (Telkwa Formation) comprises three volcanic-intrusive complexes (Mt. Henderson, Mt. O’Brien, and Kitselas) that, at their thickest, constitute almost 16 km of volcanic stratigraphy. Basal Telkwa Formation conglomerates and volcanic rocks were deposited unconformably on Triassic and Paleozoic arc-related basement. New U–Pb zircon ages indicate that volcanism initiated by ca. 204 Ma (latest Triassic). Detrital zircon populations from the basal conglomerate contain abundant 205–233 Ma zircons, derived from regional unroofing of older Triassic intrusions. Eleven kilometres higher in the section, ca. 194 Ma, rhyolites show that arc construction continued for >10 million years. Strata of the Nilkitkwa Formation (upper Hazelton Group) with a U–Pb zircon age of 178.90 ± 0.28 Ma represent waning island-arc volcanism. Telkwa Formation volcanic rocks have bimodal silica concentrations ranging from 48.1 to 62.8 wt.% and 72.3 to 79.0 wt.% and display characteristics of subduction-related magmatism (i.e., calc-alkaline differentiation with low Nb and Ti and high Th concentrations). Mafic to intermediate rocks form a differentiated suite that ranges from high-Al basalt to medium- to high-K andesite. They were derived from hydrous melting of isotopically juvenile spinel lherzolite in the mantle wedge and from subsequent fractional crystallization. Compared to basalts and andesites (εNd = +5 to +5.5), rhyolites have higher positive εNd values (+5.9 to +6.0) and overlapping incompatible element concentrations, indicating that they are not part of the same differentiation suite. Rather, the rhyolites formed from anatexis of arc crust, probably caused by magmatic underplating of the crust. This study documents a temporal and spatial co-occurrence of Hazelton Group volcanic rocks with a belt of economic Cu–Au porphyry deposits (ca. 205–195 Ma) throughout northwestern Stikinia. The coeval relationship is attributed to crustal underplating and intra-arc extension associated with slab rollback during renewed or reconfigured subduction beneath Stikinia, following the demise of the Stuhini arc in the Late Norian.


2016 ◽  
Vol 36 (1) ◽  
pp. 13-39 ◽  
Author(s):  
J. Donnelly

Medieval Scottish economic and social history has held little interest for a unionist establishment but, just when a recovery of historic independence begins to seem possible, this paper tackles a (perhaps the) key pre-1424 source. It is compared with a Rutland text, in a context of foreign history, both English and continental. The Berwickshire text is not, as was suggested in 2014, a ‘compte rendu’ but rather an ‘extent’, intended to cross-check such accounts. Read alongside the Rutland roll, it is not even a single ‘compte’ but rather a palimpsest of different sources and times: a possibility beyond earlier editorial imaginings. With content falling (largely) within the time-frame of the PoMS project (although not actually included), when the economic history of Scotland in Europe is properly explored, the sources discussed here will be key and will offer an interesting challenge to interpretation. And some surprises about their nature and date.


2008 ◽  
Vol 42 ◽  
pp. 36-54
Author(s):  
M. S. Kulikovskiy

Main trends of diatom studies in Sphagnum bogs of Russia and adjacent countries are shown. On the basis of published data, making use of modern taxonomical changes, the taxonomical list of diatoms from the considered Sphagnum bogs is presented.


Author(s):  
L.V. Vetchinnikova ◽  
◽  
A.F. Titov ◽  
◽  

The article reports on the application of the best known principles for mapping natural populations of curly (Karelian) birch Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti – one of the most appealing representatives of the forest tree flora. Relying on the synthesis and analysis of the published data amassed over nearly 100 years and the data from own full-scale studies done in the past few decades almost throughout the area where curly birch has grown naturally, it is concluded that its range outlined in the middle of the 20th century and since then hardly revised is outdated. The key factors and reasons necessitating its revision are specified. Herewith it is suggested that the range is delineated using the population approach, and the key element will be the critical population size below which the population is no longer viable in the long term. This approach implies that the boundaries of the taxon range depend on the boundaries of local populations (rather than the locations of individual trees or small clumps of trees), the size of which should not be lower than the critical value, which is supposed to be around 100–500 trees for curly birch. A schematic map of the curly birch range delineated using this approach is provided. We specially address the problem of determining the minimum population size to secure genetic diversity maintenance. The advantages of the population approach to delineating the distribution range of curly birch with regard to its biological features are highlighted. The authors argue that it enables a more accurate delineation of the range; shows the natural evolutionary history of the taxon (although it is not yet officially recognized as a species) and its range; can be relatively easily updated (e.g. depending on the scope of reintroduction); should be taken into account when working on the strategy of conservation and other actions designed to maintain and regenerate this unique representative of the forest tree flora.


1999 ◽  
Vol 1 (5) ◽  
pp. 423-443 ◽  
Author(s):  
E. P. Dubinin ◽  
N. M. Sushchevskaya ◽  
A. L. Grokhol'skiy

Sign in / Sign up

Export Citation Format

Share Document