Mass-balance control on the interaction of axial and transverse channel systems

Geology ◽  
2011 ◽  
Vol 39 (7) ◽  
pp. 611-614 ◽  
Author(s):  
Wonsuck Kim ◽  
Sean D. Connell ◽  
Elisabeth Steel ◽  
Gary A. Smith ◽  
Chris Paola
2019 ◽  
Vol 135 ◽  
pp. 37-47 ◽  
Author(s):  
Pekka Itävuo ◽  
Erik Hulthén ◽  
Moshen Yahyaei ◽  
Matti Vilkko
Keyword(s):  

2009 ◽  
Vol 50 (50) ◽  
pp. 163-168 ◽  
Author(s):  
Andrew G. Fountain ◽  
Matthew J. Hoffman ◽  
Frank Granshaw ◽  
Jon Riedel

AbstractBenchmark glaciers were established in many alpine areas during the 1960s as part of the International Hydrological Decade to represent ‘typical’ mass and energy processes on glaciers in different climatic regions around the world. These glaciers have received new interest in the past decade because they are used to infer the contribution of alpine glacier wastage to global sea-level rise. We compare South Cascade Glacier, the benchmark glacier for the northwest contiguous USA, and four other secondary glaciers, against the topographic, area and mass changes of 321 glaciers in the surrounding region. Results show that South Cascade Glacier is unusually large, of lower slope and much larger area and had mass losses greater than most other glaciers in the region. Three of the four secondary glaciers were much more typical. Year-to-year variations in mass balance were highly correlated between all five glaciers, and any of these glaciers, including the benchmark glacier, could be used to infer temporal mass variations in the region. However, the use of South Cascade Glacier to estimate area/mass losses for the region would result in overestimating the area/mass changes by a factor of three. Local differences in the magnitude of annual glacier mass balance control cumulative mass changes and area changes. There appears to be no way to select a representative glacier a priori, and knowledge of changes over the region is required. Therefore, there may be great uncertainty in estimates of sea-level rise from the wastage of alpine glaciers based on the benchmark approach. We recommend re-evaluation of regional glacier mass changes inferred from benchmark glaciers in critical regions.


2019 ◽  
Vol 4 (6) ◽  
pp. 1418-1422
Author(s):  
Bre Myers ◽  
J. Andrew Dundas

Purpose The primary aim of the current article is to provide a brief review of the literature regarding the effects of noise exposure on the vestibular and balance control systems. Although the deleterious effects of noise on the auditory system are widely known and continue to be an active area of research, much less is known regarding the effects of noise on the peripheral vestibular system. Audiologists with working knowledge of how both systems interact and overlap are better prepared to provide comprehensive care to more patients as assessment of both the auditory and vestibular systems has been in the audiologists' scope of practice since 1992. Method A narrative review summarizes salient findings from the archival literature. Results Temporary and permanent effects on vestibular system function have been documented in multiple studies. Hearing conservation, vestibular impairment, and fall risk reduction may be more intimately related than previously considered. Conclusions A full appreciation of both the vestibular and auditory systems is necessary to address the growing and aging noise-exposed population. More cross-system studies are needed to further define the complex relationship between the auditory and vestibular systems to improve comprehensive patient care.


Sign in / Sign up

Export Citation Format

Share Document