scholarly journals The ‘benchmark glacier’ concept – does it work? Lessons from the North Cascade Range, USA

2009 ◽  
Vol 50 (50) ◽  
pp. 163-168 ◽  
Author(s):  
Andrew G. Fountain ◽  
Matthew J. Hoffman ◽  
Frank Granshaw ◽  
Jon Riedel

AbstractBenchmark glaciers were established in many alpine areas during the 1960s as part of the International Hydrological Decade to represent ‘typical’ mass and energy processes on glaciers in different climatic regions around the world. These glaciers have received new interest in the past decade because they are used to infer the contribution of alpine glacier wastage to global sea-level rise. We compare South Cascade Glacier, the benchmark glacier for the northwest contiguous USA, and four other secondary glaciers, against the topographic, area and mass changes of 321 glaciers in the surrounding region. Results show that South Cascade Glacier is unusually large, of lower slope and much larger area and had mass losses greater than most other glaciers in the region. Three of the four secondary glaciers were much more typical. Year-to-year variations in mass balance were highly correlated between all five glaciers, and any of these glaciers, including the benchmark glacier, could be used to infer temporal mass variations in the region. However, the use of South Cascade Glacier to estimate area/mass losses for the region would result in overestimating the area/mass changes by a factor of three. Local differences in the magnitude of annual glacier mass balance control cumulative mass changes and area changes. There appears to be no way to select a representative glacier a priori, and knowledge of changes over the region is required. Therefore, there may be great uncertainty in estimates of sea-level rise from the wastage of alpine glaciers based on the benchmark approach. We recommend re-evaluation of regional glacier mass changes inferred from benchmark glaciers in critical regions.

2016 ◽  
Vol 57 (71) ◽  
pp. 223-231 ◽  
Author(s):  
Liyun Zhao ◽  
Ran Ding ◽  
John C. Moore

AbstractWe estimate all the individual glacier area and volume changes in High Mountain Asia (HMA) by 2050 based on Randolph Glacier Inventory (RGI) version 4.0, using different methods of assessing sensitivity to summer temperatures driven by a regional climate model and the IPCC A1B radiative forcing scenario. A large range of sea-level rise variation comes from varying equilibrium-line altitude (ELA) sensitivity to summer temperatures. This sensitivity and also the glacier mass-balance gradients with elevation have the largest coefficients of variability (amounting to ~50%) among factors examined. Prescribing ELA sensitivities from energy-balance models produces the highest sea-level rise (9.2 mm, or 0.76% of glacier volume a–1), while the ELA sensitivities estimated from summer temperatures at Chinese meteorological stations and also from 1°x1° gridded temperatures in the Berkeley Earth database produce 3.6 and 3.8 mm, respectively. Different choices of the initial ELA or summer precipitation lead to 15% uncertainties in modelled glacier volume loss. RGI version 4.0 produces 20% lower sea-level rise than version 2.0. More surface mass-balance observations, meteorological data from the glaciated areas, and detailed satellite altimetry data can provide better estimates of sea-level rise in the future.


2013 ◽  
Vol 7 (2) ◽  
pp. 789-839 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until present, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without error considerations. In this study, we propose a framework for re-analyzing glacier mass balance series including conceptual and statistical toolsets for assessment of random and systematic errors as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme drawing on an analysis that comprises over 50 recording periods for a dozen glaciers and we make recommendations to investigators and users of glacier mass balance data. Reanalysis of glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality and provide thorough uncertainty estimates.


2021 ◽  
Author(s):  
Larissa van der Laan ◽  
Kristian Förster ◽  
Fabien Maussion ◽  
Adam Scaife

<p>Glaciers fulfil several important roles in the earth system, including being clear indicators of climate change and providing essential freshwater storage and downstream runoff to 22% of the global population. In addition, they are the main contributors to sea level rise and are expected to remain so throughout the 21st Century. In order to monitor glacier development, observing and predicting glacier mass balance on different spatial and temporal scales is essential. The current study aims to improve the understanding of glacier mass balance prediction on the decadal scale (5-15 years), a rarely studied time scale in the context of glaciers, but if reliable, highly applicable for glacier related water resource management and sea level rise predictions. This is achieved through the use of CMIP5 decadal climate prediction multi-model ensembles (reforecasts) to force the mass balance component of the Open Global Glacier Model (OGGM). This method is applied to 254 reference glaciers, distributed throughout 17 of the 19 Randolph Glacier Inventory (RGI) regions. The reforecasts are initialized in 1960 and 1980 and bias corrected to the glacier scale. The following statistical analysis then gives a good indication of the skill of climate reforecasts in mass balance modelling on this glacier atypical time scale.</p>


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


The development of the area, of the Thames Estuary is briefly traced since the late Cretaceous period, with its present outline being due to a combination of factors. The overall subsidence of the North Sea area, the ‘Alpine5 fold movements, and the transgression of the sea since the retreat of the Weichselian icesheets have all contributed. The positions of the shore-line during the critical phase, 9600 b.p. to 8000 b.p., of this last transgression of the sea are shown. Subsequent to this main transgressive phase, erosion of the shoreline has been rapid due to storm-waves and tidal current action. An estimation of the average rate of subsidence and/or sea-level rise is given based on the concept of sedimentary equilibrium in which a figure of 12.7 cm (5 in) per century is arrived at.


2013 ◽  
Vol 7 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.


2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


2019 ◽  
Vol 11 (17) ◽  
pp. 2019 ◽  
Author(s):  
Sergio Fagherazzi ◽  
Giovanna Nordio ◽  
Keila Munz ◽  
Daniele Catucci ◽  
William S. Kearney

Retreat of coastal forests in relation to sea level rise has been widely documented. Recent work indicates that coastal forests on the Delmarva Peninsula, United States, can be differentiated into persistence and regenerative zones as a function of sea-level rise and storm events. In the lower persistence zone trees cannot regenerate because of frequent flooding and high soil salinity. This study aims to verify the existence of these zones using spectral remote sensing data, and determine whether the effect of large storm events that cause damage to these forests can be detected from satellite images. Spectral analysis confirms a significant difference in average Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) values in the proposed persistence and regenerative zones. Both NDVI and NDWI indexes decrease after storms triggering a surge above 1.3 m with respect to the North American Vertical Datum of 1988 (NAVD88). NDWI values decrease more, suggesting that this index is better suited to detect the effect of hurricanes on coastal forests. In the regenerative zone, both NDVI and NDWI values recover three years after a storm, while in the persistence zone the NDVI and NDWI values keep decreasing, possibly due to sea level rise causing vegetation stress. As a result, the forest resilience to storms in the persistence zone is lower than in the regenerative zone. Our findings corroborate the ecological ratchet model of coastal forest disturbance.


Sign in / Sign up

Export Citation Format

Share Document