Origin of non-cotectic cumulates: A novel approach

Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 604-608 ◽  
Author(s):  
R.M. Latypov ◽  
S.Yu. Chistyakova

Abstract Plutonic mafic complexes are composed of cumulates in which minerals mostly occur in cotectic proportions. This is consistent with a concept that basaltic magma chambers predominantly crystallize in situ from margins inward. However, cumulates with two (or more) minerals in proportions that are at odds with those expected from liquidus phase equilibria also locally occur in these complexes. Such non-cotectic cumulates are commonly attributed to either mechanical separation of minerals crystallizing from the same parental magma or mechanical mixing of minerals originating from different parental magmas. Here we introduce a novel concept that does not require any of these processes to produce non-cotectic cumulates. The model involves melts that start crystallizing upon their cooling, while ascending along feeder conduits from deep staging reservoirs toward the Earth’s surface. Depending on the degree of cooling, the melts become successively saturated in one, two, and more liquidus phases. Given that most crystals are kept in suspension, the resulting magmas would contain a cargo of equilibrium phenocrysts in notably non-cotectic proportions. The replenishment of basaltic chambers developing through in situ crystallization by such magmas is likely responsible for the occasional formation of non-cotectic cumulates in plutonic mafic complexes.

2008 ◽  
Vol 403 ◽  
pp. 243-244
Author(s):  
E. Ayas ◽  
Alpagut Kara ◽  
Ferhat Kara

An effective approach for preparing electrically conductive SiAlON-TiN composites was developed. Granules of a designed composition of α- SiAlON was obtained by spray drying and coated with varying amounts of TiO2 powder homogenously by mechanical mixing. Fully dense composites were obtained by spark plasma sintering (SPS) under a pressure of 50 MPa at 1650°C for 5min. According to the SEM analysis, unique microstructures containing continuously segregated in-situ formed TiN phase in 3-D were achieved. Additionally, XRD studies revealed that all TiO2 was successfully converted to TiN. The resistivity of the α-β SiAlON (1x1011 .m) was drastically reduced with the addition of only 5 vol. % TiO2 (2x10-4 .m).


Author(s):  
R. A. Wiebe

ABSTRACT:Plutonic complexes with interlayered mafic and silicic rocks commonly contain layers (1–50 m thick) with a chilled gabbroic base that grades upwards to dioritic or silicic cumulates. Each chilled base records the infusion of new basaltic magma into the chamber. Some layers preserve a record of double-diffusive convection with hotter, denser mafic magma beneath silicic magma. Processes of hybridisation include mechanical mixing of crystals and selective exchange of H2O, alkalis and isotopes. These effects are convected away from the boundary into the interiors of both magmas. Fractional crystallisation aad replenishment of the mafic magma can also generate intermediate magma layers highly enriched in incompatible elements.Basaltic infusions into silicic magma chambers can significantly affect the thermal and chemical character of resident granitic magmas in shallow level chambers. In one Maine pluton, they converted resident I-type granitic magma into A-type granite and, in another, they produced a low-K (trondhjemitic) magma layer beneath normal granitic magma. If comparable interactions occur at deeper crustal levels, selective thermal, chemical and isotopic exchange should probably be even more effective. Because the mafic magmas crystallise first and relatively rapidly, silicic magmas that rise away from deep composite chambers may show little direct evidence (e.g. enclaves) of their prior involvement with mafic magma.


2019 ◽  
Vol 491 (1) ◽  
pp. 243-265 ◽  
Author(s):  
Federico Farina ◽  
Matthew J. Mayne ◽  
Gary Stevens ◽  
Roxanne Soorajlal ◽  
Dirk Frei ◽  
...  

AbstractThe Buddusò Pluton in NE Sardinia (Italy) is a normally zoned intrusion composed of three units with chemical composition ranging from hornblende-bearing tonalites (SiO2∼ 65 wt%) to leucocratic monzogranites (SiO2∼ 76 wt%). Zircon crystals in the pluton are dated at 292.2 ± 0.7 Ma and have εHf values ranging from −4 to −8, with no systematic differences observed between the units. The pluton, which is isotopically homogeneous at the whole-rock scale in terms of Sr and Nd isotopes, shows textural evidence indicating local crystal–melt segregation. In this paper, we have implemented a novel approach based on path-dependent phase-equilibria modelling to test the hypothesis that the internal chemical variability of the pluton was generated by crystallization differentiation of a homogeneous parental magma. Our modelling indicates that this hypothesis is valid if the mechanism by which this occurs is compaction in a rheologically locked crystal-rich magma and if the separation occurs at 0.3 GPa from a tonalitic magma with water content >2 wt%. Finally, a subset of the magmatic enclaves in the pluton are considered to be autoliths, formed by the disruption of the compacted crystal mush and interaction between these cumulates and the felsic melt.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Willem Kruger ◽  
Rais Latypov

AbstractAn understanding of magma chamber dynamics relies on answering three important yet highly controversial questions: where, why, and how magma chambers crystallize and differentiate. Here we report on a new natural phenomenon—the undercut-embayed chamber floor in the Bushveld Complex—which allows us to address these questions. The undercut-embayed floor is produced by magmatic karstification (i.e. erosion by dissolution) of the underlying cumulates by replenishing magmas that form basal flows on the chamber floor. This results in a few metres thick three-dimensional framework of spatially interconnected erosional remnants that separate the floor cumulates from the overlying resident melt. The basal flow in this environment is effectively cooled through the floor, inducing heterogeneous nucleation and in situ growth against much of its three-dimensional framework. The solidification front thus propagates in multiple directions from the surfaces of erosional remnants. Fractional crystallization may occur within this environment by convective removal of a compositional boundary layer from in situ growing crystals and is remarkably efficient even in very confined spaces. We propose that the way magma crystallizes and differentiates in the undercut-embayed chamber floor is likely common for the evolution of many basaltic magma chambers.


Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 119227
Author(s):  
Yan Ding ◽  
Yunchao Li ◽  
Yujie Dai ◽  
Xinhong Han ◽  
Bo Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document