scholarly journals Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean

Geology ◽  
2021 ◽  
Author(s):  
Wei Wang ◽  
Peter A. Cawood ◽  
Christopher J. Spencer ◽  
Manoj K. Pandit ◽  
Jun-Hong Zhao ◽  
...  

The timing of the emergence of subaerial landmasses is equivocally constrained as post-Archean and continues to be a much-debated issue. In this study, we document exceptionally 18O-depleted (δ18O < 4.7‰) Mesoarchean to early Neoarchean magmatism in India that shows a similarity with the coeval low-δ18O magmas reported from Australia, South America, and northern China. Such global-scale low-δ18O magmatism would require high-temperature meteoric water–rock interaction in the uppermost crust synchronous with magma generation, necessitating the emergence of a substantial volume of the continental crust. The timing of this low-δ18O magmatism coincides with the development of extensive, subaerial large igneous provinces, a downward shift in δ18O and Δ17O values in pelitic rocks, the rise of normalized 87Sr/86Sr in seawater, and an intermittent upsurge in the proportion of atmospheric oxygen. We propose that the emergence of substantial volumes of continental crust initiated at ca. 3.2 Ga and peaked at 2.8–2.6 Ga, facilitating the generation of globally distributed low-δ18O magmas, and this event can be linked to the first appearance of atmospheric oxygen.

2013 ◽  
Vol 17 (7) ◽  
pp. 2917-2928 ◽  
Author(s):  
G. Mongelli ◽  
S. Monni ◽  
G. Oggiano ◽  
M. Paternoster ◽  
R. Sinisi

Abstract. Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future.


Clay Minerals ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 591-608 ◽  
Author(s):  
M. Osborne ◽  
R. S. Haszeldine ◽  
A. E. Fallick

AbstractDiagenetic kaolinite in reservoir sandstones of the Brent Group precipitated following the dissolution of detrial feldspar. Two distinct morphologies of kaolinite occur: (1) early diagenetic vermiform kaolinite which is often associated with expanded detrital micas; (2) later diagenetic ‘blocky’ kaolinite. Combined hydrogen and oxygen isotopic studies suggest that vermiform kaolinite precipitated at 25–50°C, and blocky kaolinite at 50–80°C, from pore-waters of a similar isotopic composition (δ18O = −6.5 to −3.5‰). These pore-waters are interpreted to be either a mixture of meteoric and compactional waters, or alternatively a meteoric water that had evolved isotopically due to water-rock interaction. Kaolinite precipitation occurred predominantly during the late Cretaceous to early Eocene. Influx of meteoric water into the Brent Group, probably occurred during the Palaeocene. Fluid flow across the entire basin was driven by a hydrostatic head on the East Shetland Platform palaeo-landmass to the west. The development of the two kaolinite morphologies is possibly related to the degree of supersaturation at the time of precipitation. At low degrees of supersaturation, vermiform kaolinite precipitated slowly upon detrital mica surfaces. Blocky kaolinite precipitated more rapidly into open pore-space at higher degrees of supersaturation. Precipitation of blocky kaolinite was perhaps triggered by the decay of oxalate.


Author(s):  
Nnenesi A. Kgabi ◽  
Eliot Atekwana ◽  
Johanna Ithindi ◽  
Martha Uugwanga ◽  
Kay Knoeller ◽  
...  

Abstract. We assessed environmental tracers in groundwater in two contrasting basins in Namibia; the Kuiseb Basin, which is a predominantly dry area and the Cuvelai-Etosha Basin, which is prone to alternating floods and droughts. We aimed to determine why the quality of groundwater was different in these two basins which occur in an arid environment. We analysed groundwater and surface water for the stable isotope ratios of hydrogen (δ2H) and oxygen (δ18O) by cavity ring-down spectroscopy and metals by inductively coupled plasma mass spectrometry. The δ2H and δ18O of surface water in the Cuvelai-Etosha Basin plot on an evaporation trend below the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The δ2H and δ18O of some groundwater samples in the Cuvelai-Etosha Basin also plot on the evaporation trend, indicating recharge by evaporated rain or evaporated surface water. In contrast, the δ2H and δ18O of groundwater samples in the Kuiseb Basin plot mostly along the GMWL and the LMWL, indicating direct recharge from unevaporated rain or unevaporated surface water. Fifty percent of groundwater samples in the Cuvelai-Etosha Basin was potable (salinity < 1 ppt) compared to 79 % in the Kuiseb Basin. The high salinity in the groundwater of the Cuvelai-Etosha Basin does not appear to be caused by evaporation of water (evapo-concentration) on surface prior to groundwater recharge, but rather by the weathering of the Kalahari sediments. The low salinity in the Kuiseb Basin derives from rapid recharge of groundwater by unevaporated rain and limited weathering of the crystalline rocks. The order of abundance of cations in the Kuiseb Basin is Na > K > Ca > Mg vs. Na > Mg > Ca > K for the Cuvelai-Etosha Basin. For metals in the Kuiseb Basin the order of abundance is Fe > Al > V > As > Zn vs. Al > Fe > V> As > Zn for the Cuvelai-Etosha Basin. The relative abundance of cations and metals are attributed to the differences in geology of the basins and the extent of water-rock interaction. Our results show that the quality of groundwater in Cuvelai-Etosha Basin and Kuiseb Basin which vary in the extent of aridity, is controlled by the extent of water-rock interaction at the surface and in the groundwater aquifer.


2017 ◽  
Vol 54 (3) ◽  
pp. 203-221 ◽  
Author(s):  
Zell Peterman ◽  
Joanna Thamke ◽  
Kiyoto Futa ◽  
Thomas Oliver

Brine (also referred to as ‘produced water’) samples were collected from 28 wells producing oil from the Late Devonian-Early Mississippian Bakken and Three Forks Formations in the Williston Basin of eastern Montana and western North Dakota. The samples were analyzed for major ions, trace metals, stable isotopes, and strontium isotopes. The brines in these formations are highly saline with total dissolved solids averaging 308 g/L, almost ten times the salinity of modern seawater. Relative to modern seawater, the brines are enriched approximately 10 to 20 times in [Na], [K], [Cl], and [Br]. Greater enrichments of 100 to 400 times in [Li], [B], [Sr] and [Rb], and 2,000 to 10,000 times in [Cs] and [Ba] are probably due to water-rock interaction (WRI). WRI is further indicated by 87Sr/86Sr values typically between 0.710 and 0.711—considerably larger than marine values of 0.7081 to 0.7083 during this depositional interval. Bakken Formation sediments were deposited in a stratified water column with salinity increasing with depth. The deeper water may have been saturated in calcium carbonate and possibly gypsum, but there is no evidence that halite saturation had been attained. Therefore, brines may have been introduced into the Bakken Formation from the underlying Devonian Prairie Formation or from the overlying Charles Formation before these brines were diluted or replaced by meteoric water. Alternatively, salinity of the native pore water was increased by membrane filtration driven by overpressuring within the Bakken Formation.


2021 ◽  
Vol 71 ◽  
pp. 215-226
Author(s):  
Satrio Satrio ◽  
◽  
Rasi Prasetio ◽  
B. Yoseph C.S.S. Syah Alam ◽  
M. Sapari D. Hadian ◽  
...  

The current 2019 isotope and hydrochemical study of hot and cold springs in Sembalun - Rinjani area is a re-assessment of previous similar study in 2012. The aim of this study is to assess the isotope and hydrochemical characteristics of springs due to the earthquake events in 2018. After the earthquake events in 2018, the stable isotopes δ18O and δ2H composition of Sebau hot spring and most of cold springs is shifted into more depleted values which may indicate water-rock interaction or interaction with cold waters which has more depleted δ18O and δ2H values. Also, Sebau hot spring is still plotted at mixing line of meteoric and andesitic water, but still dominant meteoric water. The hydrochemical data of all cold springs and Orok river show the enrichment of Na, probably from silicates weathering or the cation exhchange. While hydrochemical composition of Sebau hot spring is significantly decreased, except SO4, probably due to dilution with cold waters before the thermal water reach the surface. The Piper diagram showed that cold springs and Orok river are Ca-Mg-HCO3 type before and after the earthquake events. While Sebau hot spring is shifted from Ca-Cl type into mixed Ca-Mg-Cl type after the earthquake events. The temperature of Sebau hot spring slightly decreased from 35.5 °C to 34.8 °C after the earthquake events, while Na/K geothermometer calculation also indicate decreasing of sub-surface temperature, i.e. from 146–165 °C to 130–150 °C.


Author(s):  
I. G. Meighan ◽  
A. E. Fallick ◽  
A. G. McCormick

ABSTRACTIt is now generally accepted that British Tertiary granites contain crustal and mantle components. Genesis principally by differentiation of crustally contaminated basaltic magmas is widely held and silicic melts with some remarkable trace element similarities were generated within different upper crust along the St Kilda/Skye - Carlingford zone.New whole-rock (and mineral) O isotope data for the southern sector of the province (N Arran, Ailsa Craig, Mourne Mountains, Slieve Gullion, etc) reveal that δ18O lies in the range +5·1 to +9·7‰ for most of the analysed granites, meteoric water-rock interaction having been in general less intensive than at Skye and Mull. Nevertheless, highly 18O-depleted country rocks (with δ18O<0) exist adjacent to the N Arran and Mourne Mountains granite plutons. There is as yet no evidence for the existence of low -18O granitic melts in this southern sector where magmatic δ18O compositions (up to c. + 9·5‰) can be inferred for some of the intrusions.New Nd (and Sr) isotope data indicate that although there is some similarity in initial 87Sr/86Sr ratios between the northern and southern sector granites, in northeastern Ireland initial εNd values for the analysed Tertiary acid major intrusions range from −3·9 to −4·5. This is in marked contrast to the Skye granites, some of which have values below −20, reflecting the involvement of different lithosphere.


2020 ◽  
Author(s):  
Marie Haut-Labourdette ◽  
◽  
Daniele Pinti ◽  
André Poirier ◽  
Marion Saby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document