scholarly journals Grand Canyon provenance for orthoquartzite clasts in the lower Miocene of coastal southern California

Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1973-1998 ◽  
Author(s):  
Leah Sabbeth ◽  
Brian P. Wernicke ◽  
Timothy D. Raub ◽  
Jeffrey A. Grover ◽  
E. Bruce Lander ◽  
...  

Abstract Orthoquartzite detrital source regions in the Cordilleran interior yield clast populations with distinct spectra of paleomagnetic inclinations and detrital zircon ages that can be used to trace the provenance of gravels deposited along the western margin of the Cordilleran orogen. An inventory of characteristic remnant magnetizations (CRMs) from >700 sample cores from orthoquartzite source regions defines a low-inclination population of Neoproterozoic–Paleozoic age in the Mojave Desert–Death Valley region (and in correlative strata in Sonora, Mexico) and a moderate- to high-inclination population in the 1.1 Ga Shinumo Formation in eastern Grand Canyon. Detrital zircon ages can be used to distinguish Paleoproterozoic to mid-Mesoproterozoic (1.84–1.20 Ga) clasts derived from the central Arizona highlands region from clasts derived from younger sources that contain late Mesoproterozoic zircons (1.20–1.00 Ga). Characteristic paleomagnetic magnetizations were measured in 44 densely cemented orthoquartzite clasts, sampled from lower Miocene portions of the Sespe Formation in the Santa Monica and Santa Ana mountains and from a middle Eocene section in Simi Valley. Miocene Sespe clast inclinations define a bimodal population with modes near 15° and 45°. Eight samples from the steeper Miocene mode for which detrital zircon spectra were obtained all have spectra with peaks at 1.2, 1.4, and 1.7 Ga. One contains Paleozoic and Mesozoic peaks and is probably Jurassic. The remaining seven define a population of clasts with the distinctive combination of moderate to high inclination and a cosmopolitan age spectrum with abundant grains younger than 1.2 Ga. The moderate to high inclinations rule out a Mojave Desert–Death Valley or Sonoran region source population, and the cosmopolitan detrital zircon spectra rule out a central Arizona highlands source population. The Shinumo Formation, presently exposed only within a few hundred meters elevation of the bottom of eastern Grand Canyon, thus remains the only plausible, known source for the moderate- to high-inclination clast population. If so, then the Upper Granite Gorge of the eastern Grand Canyon had been eroded to within a few hundred meters of its current depth by early Miocene time (ca. 20 Ma). Such an unroofing event in the eastern Grand Canyon region is independently confirmed by (U-Th)/He thermochronology. Inclusion of the eastern Grand Canyon region in the Sespe drainage system is also independently supported by detrital zircon age spectra of Sespe sandstones. Collectively, these data define a mid-Tertiary, SW-flowing “Arizona River” drainage system between the rapidly eroding eastern Grand Canyon region and coastal California.

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 425-430 ◽  
Author(s):  
K.E. Karlstrom ◽  
M.T. Mohr ◽  
M.D. Schmitz ◽  
F.A. Sundberg ◽  
S.M. Rowland ◽  
...  

Abstract We applied tandem U-Pb dating of detrital zircon (DZ) to redefine the Tonto Group in the Grand Canyon region (Arizona, USA) and to modify the Cambrian time scale. Maximum depositional ages (MDAs) based upon youngest isotope-dilution DZ ages for the Tapeats Sandstone are ≤508.19 ± 0.39 Ma in eastern Grand Canyon, ≤507.68 ± 0.36 Ma in Nevada, and ≤506.64 ± 0.32 Ma in central Arizona. The Sixtymile Formation, locally conformable below the Tapeats Sandstone, has a similar MDA (≤508.6 ± 0.8 Ma) and is here added to the Tonto Group. We combined these precise MDAs with biostratigraphy of trilobite biozones in the Tonto Group. The Tapeats Sandstone is ca. 508–507 Ma; the Bright Angel Formation contains Olenellus, Glossopleura, and Ehmaniella biozones and is ca. 507–502 Ma; and the Muav Formation contains Bolaspidella and Cedaria biozones and is ca. 502–499 Ma. The Frenchman Mountain Dolostone is conformable above the Muav Formation and part of the same transgression; it replaces McKee’s Undifferentiated Dolomite as part of the Tonto Group; it contains the Crepicephalus Biozone and is 498–497 Ma. The Tonto Group thickens east to west, from 250 m to 830 m, due to ∼300 m of westward thickening of carbonates plus ∼300 m of eastward beveling beneath the sub-Devonian disconformity. The trilobite genus Olenellus occurs in western but not eastern Grand Canyon; it has its last appearance datum (LAD) in the Bright Angel Formation ∼45 m above the ≤507.68 Ma horizon. This extinction event is estimated to be ca. 506.5 Ma and is two biozones below the Series 2–Miaolingian Epoch boundary, which we estimate to be ca. 506 Ma. Continued tandem dating of detrital grains in stratigraphic context, combined with trilobite biostratigraphy, offers rich potential to recalibrate the tempo and dynamics of Cambrian Earth systems.


2020 ◽  
Author(s):  
Qian Liu

<p>Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.</p>


Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1425-1456
Author(s):  
Karl E. Karlstrom ◽  
Carl E. Jacobson ◽  
Kurt E. Sundell ◽  
Athena Eyster ◽  
Ron Blakey ◽  
...  

Abstract The provocative hypothesis that the Shinumo Sandstone in the depths of Grand Canyon was the source for clasts of orthoquartzite in conglomerate of the Sespe Formation of coastal California, if verified, would indicate that a major river system flowed southwest from the Colorado Plateau to the Pacific Ocean prior to opening of the Gulf of California, and would imply that Grand Canyon had been carved to within a few hundred meters of its modern depth at the time of this drainage connection. The proposed Eocene Shinumo-Sespe connection, however, is not supported by detrital zircon nor paleomagnetic-inclination data and is refuted by thermochronology that shows that the Shinumo Sandstone of eastern Grand Canyon was >60 °C (∼1.8 km deep) and hence not incised at this time. A proposed 20 Ma (Miocene) Shinumo-Sespe drainage connection based on clasts in the Sespe Formation is also refuted. We point out numerous caveats and non-unique interpretations of paleomagnetic data from clasts. Further, our detrital zircon analysis requires diverse sources for Sespe clasts, with better statistical matches for the four “most-Shinumo-like” Sespe clasts with quartzites of the Big Bear Group and Ontario Ridge metasedimentary succession of the Transverse Ranges, Horse Thief Springs Formation from Death Valley, and Troy Quartzite of central Arizona. Diverse thermochronologic and geologic data also refute a Miocene river pathway through western Grand Canyon and Grand Wash trough. Thus, Sespe clasts do not require a drainage connection from Grand Canyon or the Colorado Plateau and provide no constraints for the history of carving of Grand Canyon. Instead, abundant evidence refutes the “old” (70–17 Ma) Grand Canyon models and supports a <6 Ma Grand Canyon.


2022 ◽  
Author(s):  
Elizabeth L. Miller ◽  
Mark E. Raftrey ◽  
Jens-Erik Lund Snee

ABSTRACT In a reconnaissance investigation aimed at interrogating the changing topography and paleogeography of the western United States prior to Basin and Range faulting, a preliminary study made use of U-Pb ages of detrital zircon suites from 16 samples from the Eocene–Oligocene Titus Canyon Formation, its overlying units, and correlatives near Death Valley. The Titus Canyon Formation unconformably overlies Neoproterozoic to Devonian strata in the Funeral and Grapevine Mountains of California and Nevada. Samples were collected from (1) the type area in Titus Canyon, (2) the headwaters of Monarch Canyon, and (3) unnamed Cenozoic strata exposed in a klippe of the Boundary Canyon fault in the central Funeral Mountains. Red beds and conglomerates at the base of the Titus Canyon Formation at locations 1 and 2, which contain previously reported 38–37 Ma fossils, yielded mostly Sierran batholith–age detrital zircons (defined by Triassic, Jurassic, and Cretaceous peaks). Overlying channelized fluvial sandstones, conglomerates, and minor lacustrine shale, marl, and limestone record an abrupt change in source region around 38–36 Ma or slightly later, from more local, Sierran arc–derived sediment to extraregional sources to the north. Clasts of red radiolarian-bearing chert, dark radiolarian chert, and quartzite indicate sources in the region of the Golconda and Roberts Mountains allochthons of northern Nevada. Sandstones intercalated with conglomerate contain increasing proportions of Cenozoic zircon sourced from south-migrating, caldera-forming eruptions at the latitude of Austin and Ely in Nevada with maximum depositional ages (MDAs) ranging from 36 to 24 Ma at the top of the Titus Canyon Formation. Carbonate clasts and ash-rich horizons become more prevalent in the overlying conglomeratic Panuga Formation (which contains a previously dated 15.7 Ma ash-flow tuff). The base of the higher, ash-dominated Wahguyhe Formation yielded a MDA of 14.4 Ma. The central Funeral Mountains section exposes a different sequence of units that, based on new data, are correlative to the Titus Canyon, Panuga, and Wahguyhe Formations at locations 1 and 2. An ash-flow tuff above its (unexposed) base provided a MDA of 34 Ma, and the youngest sample yielded a MDA of 12.7 Ma. The striking differences between age-correlative sections, together with map-based evidence for channelization, indicate that the Titus Canyon Formation and overlying units likely represent fluvial channel, floodplain, and lacustrine deposits as sediments mostly bypassed the region, moving south toward the Paleogene shoreline in the Mojave Desert. The profound changes in source regions and sedimentary facies documented in the Titus Canyon Formation took place during ignimbrite flareup magmatism and a proposed eastward shift of the continental divide from the axis of the Cretaceous arc to a new divide in central Nevada in response to thermal uplift and addition of magma to the crust. This uplift initiated south-flowing fluvial systems that supplied sediments to the Titus Canyon Formation and higher units.


Geosphere ◽  
2021 ◽  
Author(s):  
A.T. Steelquist ◽  
G.E. Hilley ◽  
I. Lucchitta ◽  
R.A. Young

The timing of integration of the Colorado River system is central to understanding the landscape evolution of much of the southwestern United States. However, the time at which the Colorado River started incising the westernmost Grand Canyon (Arizona) is still an unsettled question, with conflicting interpretations of both geologic and thermochronologic data from western Grand Canyon. Fluvial gravels on the Shivwits Plateau, north of the canyon, have been reported to contain clasts derived from south of the modern canyon, suggesting the absence of western Grand Canyon at the time of their deposition. In this study, we reassess these deposits using modern geochronologic measurements to determine the age of the deposits and the presence or absence of clasts from south of the Grand Canyon. We could not identify southerly derived clasts, so cannot rule out the existence of a major topographic barrier such as Grand Canyon prior to the age of deposition of the gravels. 40Ar/39Ar analysis of a basalt clast entrained in the upper deposit (in combination with prior data) supports a maximum age of deposition of ca. 5.4 Ma, limiting deposition to post-Miocene, a period from which very few diagnostic and dated fluvial deposits remain in the western Colorado Plateau. Analysis of detrital zircon composition of the sand matrix supports interpretation of the deposit as being locally derived and not part of a major throughgoing river. We suggest that the published constraint of <6 Ma timing of Grand Canyon incision may be removed, given that no clasts that must be sourced from south of Grand Canyon were found in the only known outcrop of gravels under the Shivwits Plateau basalts at Grassy Mountain north of Grand Canyon.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Jennifer N. Gifford ◽  
Elizabeth J. Vitale ◽  
Brian F. Platt ◽  
David H. Malone ◽  
Inoka H. Widanagamage

We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County, Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input. The stratigraphic positions of the montmorillonitic sands suggest that these deposits represent some of the youngest Late Cretaceous volcanism in the MSE.


2009 ◽  
Vol 4 ◽  
pp. 111-116 ◽  
Author(s):  
J. S. MacLean ◽  
J. W. Sears ◽  
K. R. Chamberlain ◽  
A. K. Khudoley ◽  
A. V. Prokopiev ◽  
...  

Abstract. Strikingly similar Late Mesoproterozoic stratigraphic sequences and correlative U-Pb detrital-zircon ages may indicate that the Sette Daban region of southeastern Siberia and the Death Valley region of southwestern North America were formerly contiguous parts of a Grenville foreland basin. The Siberian section contains large numbers of detrital zircons that correlate with Grenville, Granite-Rhyolite, and Yavapai basement provinces of North America. The sections in both Siberia and Death Valley exhibit west-directed thrust faults that may represent remnants of a Grenville foreland thrust belt. North American detrital-zircon components do not occur in Siberian samples above a ~600 Ma breakup unconformity, suggesting that rifting and continental separation blocked transfer of clastic sediment between the cratons by 600 Ma. Faunal similarities suggest, however, that the two cratons remained within the breeding ranges of Early Cambrian trilobites and archeocyathans.


2017 ◽  
Author(s):  
Alexander Tye ◽  
◽  
Nathan A. Niemi ◽  
Rafiq Safarov ◽  
Fakhraddin Kadirov

Sign in / Sign up

Export Citation Format

Share Document