scholarly journals Interpretation of hydrothermal conditions, production-injection induced effects, and evidence for enhanced geothermal system- type heat exchange in response to >30 years of production at Roosevelt Hot Springs, Utah, USA

Geosphere ◽  
2021 ◽  
Author(s):  
Stuart F. Simmons ◽  
Rick G. Allis ◽  
Stefan M. Kirby ◽  
Joseph N. Moore ◽  
Tobias P. Fischer

The Roosevelt Hot Springs hydrothermal system is located at the base of the Mineral Mountains in southwestern Utah on the eastern side of the Basin and Range. Hydrothermal activity is related to relatively recent bimodal magmatism, and the system is hosted in coarsely crystalline rock made of Oligocene–Miocene granitoids and Precambrian gneiss. The hydrothermal plume covers ~5 km2, with a maximum temperature of 268 °C at ~750 m depth, and a vertically extensive fault-fracture mesh east of the Opal Mound fault controls the upflow of hydrothermal fluids. Power generation (currently 38 MWe gross) began in 1984, and up through 2016, four wells were used for fluid production, and three wells were used for edge-field injection. Chemical analyses of produced fluids show that modern reservoir fluid compositions are similar to but more concentrated than those at the start of production, having near-neutral pH, total dissolved solids of 7000–10,000 mg/kg, and ionic ratios of Cl/HCO3 ~50–100, Cl/SO4 ~50–100, and Na/K ~4–5. Chemical geothermometers indicate equilibration temperatures that mainly range between 240° and 300 °C. Early production induced a steep drop in pressure (~3.0–3.5 MPa), which was accompanied by a 250–300 m lowering of piezometric levels in wells and development of a shallow steam zone across the system. Hydrothermal fluid compositions evolved continuously in response to production-related steam-loss and injection breakthrough, which is reflected by gradual increases in chloride of up to 35% and stable isotope ratios of up to ~2‰ δ18O and ~10‰ #x03B4;D. Simple mixing model calculations suggest that there has been a significant amount, ~10–20 MWth, of sustained multi-decadal heat mining and enhanced geothermal system (EGS)–type heat transfer by the injectate as it returns to the production zone. Overall, the two factors that have sustained long-term power production (currently 38 MWe gross) are the increased upflow of deep chloride water and, to a lesser extent, the mining of heat at <1 km depth.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Sukir Maryanto ◽  
Ika Karlina Laila Nur Suciningtyas ◽  
Cinantya Nirmala Dewi ◽  
Arief Rachmansyah

Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used in this research because both of them are very sensitive to detect the presence of hot water. These preliminary studies have established reliable methods for hydrothermal survey that can accurately investigate the underground seepage of hot water with shallow depth resolution. We have successfully identified that the underground seepage of hot water in Blawan geothermal field is following the fault direction and river flow which is evidenced by some hot spring along the Banyu Pahit river with resistivity value less than 40 Ωm and medium conductivity.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2473
Author(s):  
Yujiang He ◽  
Xianbiao Bu

The energy reserves in hot dry rock and hydrothermal systems are abundant in China, however, the developed resources are far below the potential estimates due to immature technology of enhanced geothermal system (EGS) and scattered resources of hydrothermal systems. To circumvent these problems and reduce the thermal resistance of rocks, here a shallow depth enhanced geothermal system (SDEGS) is proposed, which can be implemented by fracturing the hydrothermal system. We find that, the service life for SDEGS is 14 years with heat output of 4521.1 kW. To extend service life, the hybrid SDEGS and solar energy heating system is proposed with 10,000 m2 solar collectors installed to store heat into geothermal reservoir. The service life of the hybrid heating system is 35 years with geothermal heat output of 4653.78 kW. The novelty of the present work is that the hybrid heating system can solve the unstable and discontinuous problems of solar energy without building additional back-up sources or seasonal storage equipment, and the geothermal thermal output can be adjusted easily to meet the demand of building thermal loads varying with outside temperature.


Sign in / Sign up

Export Citation Format

Share Document