scholarly journals Supplemental Material: ‘Taters versus Sliders: Evidence for a Long-Lived History of Strike-Slip Displacement along the Canadian Arctic Transform System (CATS)

Author(s):  
William C. McClelland ◽  
et al.

Probability plots, Shepard plot, and sources of U/Pb data in Figure 2A.

GSA Today ◽  
2021 ◽  
Author(s):  
William McClelland ◽  
Justin Strauss ◽  
Maurice Copron ◽  
Jane Gilotti ◽  
Karol Faehnrich ◽  
...  

2017 ◽  
Vol 47 (2) ◽  
pp. 164-199
Author(s):  
Adam M. Sowards

Exploration has always centered on claims: for country, for commerce, for character. Claims for useful scientific knowledge also grew out of exploration’s varied activities across space and time. The history of the Canadian Arctic Expedition of 1913–18 exposes the complicated process of claim-making. The expedition operated in and made claims on many spaces, both material and rhetorical, or, put differently, in several natural and discursive spaces. In making claims for science, the explorer-scientists navigated competing demands on their commitments and activities from their own predilections and from external forces. Incorporating Arctic spaces into the Canadian polity had become a high priority during the era when the CAE traversed the Arctic. Science through exploration—practices on the ground and especially through scientific and popular discourse—facilitated this integration. So, claiming space was something done on the ground, through professional literature, and within popular narratives—and not always for the same ends. The resulting narrative tensions reveal the messy material, political, and rhetorical spaces where humans do science. This article demonstrates how explorer-scientists claimed material and discursive spaces to establish and solidify their scientific authority. When the CAE claimed its spaces in nature, nation, and narrative, it refracted a reciprocal process whereby the demands of environment, state, and discourse also claimed the CAE.


2021 ◽  
Author(s):  
Ryo Okuwaki ◽  
Wenyuan Fan

A devastating magnitude 7.2 earthquake struck Southern Haiti on 14 August 2021. The earthquake caused severe damages and over 2000 casualties. Resolving the earthquake rupture process can provide critical insights into hazard mitigation. Here we use integrated seismological analyses to obtain the rupture history of the 2021 earthquake. We find the earthquake first broke a blind thrust fault and then jumped to a disconnected strike-slip fault. Neither of the fault configurations aligns with the left-lateral tectonic boundary between the Caribbean and North American plates. The complex multi-fault rupture may result from the oblique plate convergence in the region that the initial thrust rupture is due to the boundary-normal compression and the following strike-slip faulting originates from the Gonâve microplate block movement, orienting towards the SW-NE direction. The complex rupture development of the earthquake suggests that the regional deformation is accommodated by a network of segmented faults with diverse faulting conditions.


2000 ◽  
Vol 37 (9) ◽  
pp. 1259-1273 ◽  
Author(s):  
M E McMechan

Walker Creek fault zone (WCFZ), well exposed in the western Rocky Mountains of central British Columbia near 54°, comprises a 2 km wide zone of variably deformed Neoproterozoic and Cambrian strata in fault-bounded slivers and lozenges. Extensional shear bands, subhorizontal extension lineations, slickensides, mesoscopic shear bands, and other minor structures developed within and immediately adjacent to the fault zone consistently indicate right-lateral displacement. Offset stratigraphic changes in correlative Neoproterozoic strata indicate at least 60 km of right-lateral displacement across the zone. WCFZ is the southern continuation of the Northern Rocky Mountain Trench (NRMT) fault zone. It shows a through going, moderate displacement, strike-slip fault system structurally links the NRMT and the north-central part of the Southern Rocky Mountain Trench. Strike-slip motion on the WCFZ occurred in the Late Cretaceous to Early Eocene at the same time as northeast-directed shortening in the fold-and-thrust belt. Thus, oblique convergence in the eastern part of the south-central Canadian Cordillera was apparently resolved into parallel northwest-striking zones of strike-slip and thrust faulting during the Late Cretaceous to Early Eocene. The change in the net Late Cretaceous to Early Eocene displacement direction for rocks in the Rocky Mountain trenches from north (56-54°N) to northeast (52-49°N) suggests that the disappearance of strike-slip displacement and increase in fold-and-thrust belt shortening in the eastern Cordillera between 56° and 49°N is largely the result of a north-south change in relative plate motion or strain partitioning across the Cordillera, rather than the southward transformation of right-lateral strike-slip displacement on the Tintina - NRMT fault system into compressional deformation.


Sign in / Sign up

Export Citation Format

Share Document