Potential of present-day experiments for determining the parameters of the gamma decay of compound states of heavy nuclei in a model-independent way

2004 ◽  
Vol 67 (4) ◽  
pp. 662-671 ◽  
Author(s):  
A. M. Sukhovoj ◽  
V. A. Khitrov
1970 ◽  
Vol 2 (2) ◽  
pp. 441-450 ◽  
Author(s):  
T. A. Griffy ◽  
Don Whitehill

1971 ◽  
Vol 105 (12) ◽  
pp. 780-781 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Lev P. Pitaevskii ◽  
Valentin S. Popov ◽  
Aleksei A. Starobinskii

1970 ◽  
Vol 100 (1) ◽  
pp. 45-92 ◽  
Author(s):  
G.N. Flerov ◽  
V.A. Druin ◽  
A.A. Pleve

1984 ◽  
Vol 144 (9) ◽  
pp. 3 ◽  
Author(s):  
Yurii M. Tsipenyuk ◽  
Yu.B. Ostapenko ◽  
G.N. Smirenkin ◽  
A.S. Soldatov

2019 ◽  
Vol 64 (7) ◽  
pp. 583 ◽  
Author(s):  
S. Harabasz

Collisions of heavy nuclei at (ultra-)relativistic energies provide a fascinating opportunity to re-create various forms of matter in the laboratory. For a short extent of time (10-22 s), matter under extreme conditions of temperature and density can exist. In dedicated experiments, one explores the microscopic structure of strongly interacting matter and its phase diagram. In heavy-ion reactions at SIS18 collision energies, matter is substantially compressed (2–3 times ground-state density), while moderate temperatures are reached (T < 70 MeV). The conditions closely resemble those that prevail, e.g., in neutron star mergers. Matter under such conditions is currently being studied at the High Acceptance DiElecton Spectrometer (HADES). Important topics of the research program are the mechanisms of strangeness production, the emissivity of matter, and the role of baryonic resonances herein. In this contribution, we will focus on the important experimental results obtained by HADES in Au+Au collisions at 2.4 GeV center-of-mass energy. We will also present perspectives for future experiments with HADES and CBM at SIS100, where higher beam energies and intensities will allow for the studies of the first-order deconfinement phase transition and its critical endpoint.


2013 ◽  
Vol 61 (3) ◽  
pp. 569-579 ◽  
Author(s):  
A. Poniszewska-Marańda

Abstract Nowadays, the growth and complexity of functionalities of current information systems, especially dynamic, distributed and heterogeneous information systems, makes the design and creation of such systems a difficult task and at the same time, strategic for businesses. A very important stage of data protection in an information system is the creation of a high level model, independent of the software, satisfying the needs of system protection and security. The process of role engineering, i.e. the identification of roles and setting up in an organization is a complex task. The paper presents the modeling and design stages in the process of role engineering in the aspect of security schema development for information systems, in particular for dynamic, distributed information systems, based on the role concept and the usage concept. Such a schema is created first of all during the design phase of a system. Two actors should cooperate with each other in this creation process, the application developer and the security administrator, to determine the minimal set of user’s roles in agreement with the security constraints that guarantee the global security coherence of the system.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 260-264 ◽  
Author(s):  
Junki Tanaka ◽  
Zaihong Yang ◽  
Stefan Typel ◽  
Satoshi Adachi ◽  
Shiwei Bai ◽  
...  

The surface of neutron-rich heavy nuclei, with a neutron skin created by excess neutrons, provides an important terrestrial model system to study dilute neutron-rich matter. By using quasi-free α cluster–knockout reactions, we obtained direct experimental evidence for the formation of α clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between α-cluster formation and the neutron skin. This result, in turn, calls for a revision of the correlation between the neutron-skin thickness and the density dependence of the symmetry energy, which is essential for understanding neutron stars. Our result also provides a natural explanation for the origin of α particles in α decay.


Sign in / Sign up

Export Citation Format

Share Document