Interference between diffractive, refractive, and Coulomb effects in the cross sections for the elastic scattering of light nuclei by nuclei at intermediate energies

2004 ◽  
Vol 67 (8) ◽  
pp. 1454-1461 ◽  
Author(s):  
Yu. A. Berezhnoy ◽  
A. S. Molev
2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Huan Nhut Phan

Nuclear reactions of proton by light nuclei at low energies play a key role in the study ofnucleosynthesis which is of interest in nuclear astrophysics. The most fundamental process whichis very necessary is the elastic scattering. In this work, we construct a microscopic proton-nucleuspotential in order to describe the differential cross-sections over scattering angles of the protonelastic scattering by 12C and 13C in the range of available energies 14 - 22 MeV. The microscopicoptical potential is based on the folding model using the effective nucleon-nucleon interactionCDM3Yn. The results show the promising use of the CDM3Yn interactions at low and very lowenergies, which were originally used for nuclear reactions at intermediate energies. This could bethe premise for the study of nuclear reactions using CDM3Yn interaction in astrophysics at lowenergies.


1995 ◽  
Vol 04 (03) ◽  
pp. 563-586 ◽  
Author(s):  
YU. A. BEREZHNOY ◽  
V. YU. KORDA

We present a closed-form description that enables us to obtain the analytical expressions for the elastic scattering and dissociation differential cross-sections of deuterons and 3H-nuclei by heavy target nuclei. The resulting expressions are used to analyze the data for the 110 MeV deuterons elastically scattered on 208Pb-nuclei. The dissociation cross-sections of deuterons and 3H-nuclei are the oscillating functions of the scattering angle of the released two- and three-nucleon-particle system center-of-mass.


1993 ◽  
Vol 48 (3) ◽  
pp. 465-468
Author(s):  
V. M. Chhaya ◽  
J. J. Tarwadi ◽  
Smita Chhag

Abstract The unitarised Eikonal Born series (UEBS) method has been used successfully by Byron et al. for elastic scattering of electrons and positrons by hydrogen atoms. Here an attempt is made to apply the UEBS method in the case of elastic scattering of electrons by helium atoms. The total and differential cross sections are calculated for the energy range 100-700 eV. The results are compared with experimental and other theoretical results. It is found that the results obtained with the UEBS method agree best with the experimental results.


1987 ◽  
Vol 65 (6) ◽  
pp. 574-577 ◽  
Author(s):  
J. Rapaport

The (p, n) reaction at intermediate energies has been used to measure differential cross sections in light nuclei to final states characterized with a ΔJπ = 1+ transfer (Gamow–Teller (GT) states). Experimental ft values for allowed beta-decay transitions in these nuclei are used to normalize the strength of the GT transitions in units of B(GT). This experimental GT strength is compared with predicted shell–model strength. For p-shell nuclei, the calculated excitation energies of the GT strength using Cohen and Kurath wave functions are in general agreement with the empirical GT distribution. Up to an excitation energy of about 20 MeV, the total experimental and calculated GT strengths are used to obtain the quenching factor, QF = Σ B(GT)exp/Σ B(GT)theor. It is found that QF decreases as the shell gets filled-up. The lowest value seems to occur for single-hole nuclei. This decrease may be explained by configuration mixing not specifically included in the calculations.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850023
Author(s):  
Yongli Xu ◽  
Yinlu Han ◽  
Qingbiao Shen

The proton microscopic optical potential (MOP) based on Skyrme interaction has been achieved by the Green function method in the nuclear matter, and given by the local density approximation (LDA) for finite nuclei. The reaction cross-sections, elastic scattering angular distributions, analyzing powers, and spin-rotation functions are predicted by the obtained proton MOP with Skyrme interaction SkC in the mass range of target nuclei 24[Formula: see text][Formula: see text][Formula: see text]A[Formula: see text][Formula: see text][Formula: see text]209 with incident proton energy below 100[Formula: see text]MeV. These observables are further predicted for some light nuclei and actinide nuclei below 100[Formula: see text]MeV. The prediction is compared with existing experimental data. It is revealed that the obtained proton MOP based on Skyrme interaction SkC can satisfactorily describe the proton–nucleus elastic scattering.


1968 ◽  
Vol 46 (23) ◽  
pp. 2645-2657 ◽  
Author(s):  
T. Y. Li ◽  
S. K. Mark

Elastic scattering cross sections for the interaction of 100-MeV protons with 6Li, 7Li, 9Be, and 12C have been analyzed using the optical model. The experimental differential cross sections are reasonably reproduced. It has been found that no average set of geometrical parameters can provide a quantitative fit to the experimental data for all of these light nuclei; they must be treated individually, with optimum optical potential parameters fluctuating from one nucleus to another. Other features revealed in this analysis include: (1) the spin–orbit radius parameter is smaller than those of the real and imaginary parts of the potential, (2) surface and volume absorption potentials give equally good fit to the experimental results, (3) the radius parameters of the real and imaginary potentials differed from each other, and (4) the radius parameter of the real part of the potential is larger than those used for heavy nuclei.


Sign in / Sign up

Export Citation Format

Share Document