Seasonal variations of the Arabian Sea level anomaly fields and circulation

Oceanology ◽  
2014 ◽  
Vol 54 (3) ◽  
pp. 289-297 ◽  
Author(s):  
V. N. Eremeev ◽  
A. N. Zhukov ◽  
A. S. Zapevalov ◽  
N. E. Lebedev ◽  
A. A. Sizov
2014 ◽  
Vol 54 (3) ◽  
pp. 318-327
Author(s):  
V. N. Eremeev ◽  
A. N. Zhukov ◽  
A. S. Zapevalov ◽  
N. E. Lebedev ◽  
A. A. Sizov

2019 ◽  
Vol 69 (2) ◽  
pp. 142-148
Author(s):  
P. Anand ◽  
P. Issac Albert ◽  
A. Raghunadha Rao

Oceanographic observations carried out during 2016 and 2017 onboard INS Sagardhwani in the Southeastern Arabian sea are used to study the inter-annual variability of the upwelling. In 2016, the strong upwelling signatures are noticed in the observations (SST < 27°C and strong up-slopping of isotherms) as well as in the satellite derived sea level anomaly data. Whereas in 2017 the low sea level in June (-2 cm) are weakened during the mid of July (+3 cm) along the southern track (8 °N and 9 °N). This decrease in the strength in 2017 can be attributed to two major reasons. One is the presence of an anti-cyclonic eddy along the coast (8.5 °N, 76.5 °E) weakens the upwelling processes and second is the weak northerly component of the wind compared to 2016. In addition, Lakshadweep low is less prominent and situated towards the southern side (around 7°N) of its usual region of occurrence in 2017. The inter-annual variability of upwelling during July 2016 and 2017 is investigated using the 3D ocean model Princeton Ocean Model. Experiments with model in different combinations of forcing reveals that the alongshore wind component is the major parameter influencing the upwelling characteristics during these periods.


2011 ◽  
Vol 2 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Smitha George ◽  
Rashmi Sharma ◽  
Sujit Basu ◽  
Abhijit Sarkar

Eos ◽  
1994 ◽  
Vol 75 (26) ◽  
pp. 295 ◽  
Author(s):  
Quanan Zheng ◽  
Xiao-Hai Yan ◽  
Chung-Ru Ho ◽  
Vic Klemas ◽  
Robert E. Chene ◽  
...  

2017 ◽  
Vol 36 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Hui Wang ◽  
Kexiu Liu ◽  
Zhigang Gao ◽  
Wenjing Fan ◽  
Shouhua Liu ◽  
...  

2021 ◽  
Author(s):  
Inger Bij de Vaate ◽  
Henrique Guarneri ◽  
Cornelis Slobbe ◽  
Martin Verlaan

&lt;p&gt;The existence of seasonal variations in major tides has been recognized since decades. Where Corkan (1934) was the first to describe the seasonal perturbation of the M2 tide, many others have studied seasonal variations in the main tidal constituents since. However, most of these studies are based on sea level observations from tide gauges and are often restricted to coastal and shelf regions. Hence, observed seasonal variations are typically dominated by local processes and the large-scale patterns cannot be clearly distinguished. Moreover, most tide models still perceive tides as annually constant and seasonal variation in tides is ignored in the correction process of satellite altimetry. This results in reduced accuracy of obtained sea level anomalies. &lt;/p&gt;&lt;p&gt;To gain more insight in the large-scale seasonal variations in tides, we supplemented the clustered and sparsely distributed sea level observations from tide gauges by the wealth of data from satellite altimeters. Although altimeter-derived water levels are being widely used to obtain tidal constants, only few of these implementations consider seasonal variation in tides. For that reason, we have set out to explore the opportunities provided by altimeter data for deriving seasonal modulation of the main tidal constituents. Different methods were implemented and compared for the principal tidal constituents and a range of geographical domains, using data from a selection of satellite altimeters. Specific attention was paid to the Arctic region where seasonal variation in tides was expected to be significant as a result of the seasonal sea ice cycle, yet data availability is particularly limited. Our study demonstrates the potential of satellite altimetry for the quantification of seasonal modulation of tides and suggests the seasonal modulation to be considerable. Already for M2 we observed changes in tidal amplitude of the order of decimeters for the Arctic region, and centimeters for lower latitude regions.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;div&gt;Corkan, R. H. (1934). An annual perturbation in the range of tide. &lt;em&gt;Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character&lt;/em&gt;, &lt;em&gt;144&lt;/em&gt;(853), 537-559.&lt;/div&gt;


2021 ◽  
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset, based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together providing an unprecedented resolution for this type of products. The final gridded fields cover all latitudes north of 50° N, on a 25 km EASE2 grid, with one grid every three days over three years from July 2016 to April 2019. We use the Adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa thus removing the need to estimate a bias between open ocean an ice covered areas. SARAL/AltiKa also provides the baseline for the cross-calibation of CryoSat-2 and Sentinel-3A data. When compared to independent data, the combined product exhibits a much better performance than previously available datasets based on the analysis of a single mission.


2015 ◽  
Vol 416 ◽  
pp. 12-20 ◽  
Author(s):  
Ken L. Ferrier ◽  
Jerry X. Mitrovica ◽  
Liviu Giosan ◽  
Peter D. Clift

Sign in / Sign up

Export Citation Format

Share Document