Multistage Games with Pairwise Interactions on Complete Graph

2020 ◽  
Vol 81 (8) ◽  
pp. 1519-1530
Author(s):  
M.A. Bulgakova ◽  
L.A. Petrosyan
2020 ◽  
Vol 57 (3) ◽  
pp. 775-791
Author(s):  
David Dereudre ◽  
Thibaut Vasseur

AbstractWe provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is superlinear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle (1970) for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite-range multi-body counterparts.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Yao ◽  
Bingsheng Chen ◽  
Tim S. Evans ◽  
Kim Christensen

AbstractWe study the evolution of networks through ‘triplets’—three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm’s performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 877-889
Author(s):  
A B Harper

Abstract The theory of evolutionarily stable strategies (ESS) predicts the long-term evolutionary outcome of frequency-dependent selection by making a number of simplifying assumptions about the genetic basis of inheritance. I use a symmetrized multilocus model of quantitative inheritance without mutation to analyze the results of interactions between pairs of related individuals and compare the equilibria to those found by ESS analysis. It is assumed that the fitness changes due to interactions can be approximated by the exponential of a quadratic surface. The major results are the following. (1) The evolutionarily stable phenotypes found by ESS analysis are always equilibria of the model studied here. (2) When relatives interact, one of the two conditions for stability of equilibria differs between the two models; this can be accounted for by positing that the inclusive fitness function for quantitative characters is slightly different from the inclusive fitness function for characters determined by a single locus. (3) The inclusion of environmental variance will in general change the equilibrium phenotype, but the equilibria of ESS analysis are changed to the same extent by environmental variance. (4) A class of genetically polymorphic equilibria occur, which in the present model are always unstable. These results expand the range of conditions under which one can validly predict the evolution of pairwise interactions using ESS analysis.


2021 ◽  
Vol 1897 (1) ◽  
pp. 012045
Author(s):  
Karrar Taher R. Aljamaly ◽  
Ruma Kareem K. Ajeena

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Thorens ◽  
K. J. Måløy ◽  
M. Bourgoin ◽  
S. Santucci

AbstractA pile of grains, even when at rest in a silo, can display fascinating properties. One of the most celebrated is the Janssen effect, named after the pioneering engineer who explained the pressure saturation at the bottom of a container filled with corn. This surprising behavior arises because of frictional interactions between the grains through a disordered network of contacts, and the vessel lateral walls, which partially support the weight of the column, decreasing its apparent mass. Here, we demonstrate control over frictional interactions using ferromagnetic grains and an external magnetic field. We show that the anisotropic pairwise interactions between magnetized grains result in a radial force along the walls, whose amplitude and direction is fully determined by the applied magnetic field. Such magnetic Janssen effect allows for the fine tuning of the granular column apparent mass. Our findings pave the way towards the design of functional jammed materials in confined geometries, via a further control of both their static and dynamic properties.


Author(s):  
ANTÓNIO GIRÃO ◽  
BHARGAV NARAYANAN

Abstract We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring when δ ≫ n−1/t, where an unavoidable t-colouring is any two-colouring of a clique of order 2t in which one colour forms either a clique of order t or two disjoint cliques of order t. Next, for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive contains an unavoidable t-tournament when δ ≫ n−1/[t/2], where an unavoidable t-tournament is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a transitive tournament of order t. Conditional on a well-known conjecture about bipartite Turán numbers, both our results are sharp up to implied constants and hence determine the order of magnitude of the corresponding off-diagonal Ramsey numbers.


2021 ◽  
Vol 53 (1) ◽  
pp. 251-278
Author(s):  
Adrián González Casanova ◽  
Juan Carlos Pardo ◽  
José Luis Pérez

AbstractIn this paper, we introduce a family of processes with values on the nonnegative integers that describes the dynamics of populations where individuals are allowed to have different types of interactions. The types of interactions that we consider include pairwise interactions, such as competition, annihilation, and cooperation; and interactions among several individuals that can be viewed as catastrophes. We call such families of processes branching processes with interactions. Our aim is to study their long-term behaviour under a specific regime of the pairwise interaction parameters that we introduce as the subcritical cooperative regime. Under such a regime, we prove that a process in this class comes down from infinity and has a moment dual which turns out to be a jump-diffusion that can be thought as the evolution of the frequency of a trait or phenotype, and whose parameters have a classical interpretation in terms of population genetics. The moment dual is an important tool for characterizing the stationary distribution of branching processes with interactions whenever such a distribution exists; it is also an interesting object in its own right.


1979 ◽  
Vol 25 (2) ◽  
pp. 175-178 ◽  
Author(s):  
J. Shearer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document