On the stability and convergence of nonlocal difference schemes

2010 ◽  
Vol 46 (7) ◽  
pp. 949-961 ◽  
Author(s):  
A. A. Alikhanov
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Dumitru Baleanu

A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to handle analytically. Therefore, we presented the numerical solution via the explicit and the implicit schemes. We presented together the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit schemes in this case are stable under some conditions.


Author(s):  
Мурат Хамидбиевич Бештоков

Изучены экономичные факторизованные схемы для псевдопараболических уравнений третьего порядка. На основе общей теории устойчивости разностных схем доказаны устойчивость и сходимость разностных схем. Economical factorized schemes for pseudo-parabolic equations of the third order are studied. On the basis of the general theory of stability of difference schemes, the stability and convergence of difference schemes are proved.


2002 ◽  
Vol 2 (1) ◽  
pp. 50-91 ◽  
Author(s):  
Piotr Matus

AbstractThe subject of this paper is the maximum principle and its application for investigating the stability and convergence of finite difference schemes. To some extent, this is a survey of the works on constructing and investigating certain new classes of monotone difference schemes. In this connection the maximum principle for the derivatives discussed in this paper is of fundamental importance. It is used as a basis for proving the coefficient stability of difference schemes in Banach spaces and the monotonicity of economical schemes of full approximation. New results on unconditional stability of monotone difference schemes with weights, conservative explicit-implicit schemes (staggered schemes), monotone schemes of second-order approximation in arbitrary domains, and monotone difference schemes for multidimensional elliptic equations with mixed derivatives are given.


1998 ◽  
Vol 08 (06) ◽  
pp. 1055-1070 ◽  
Author(s):  
ALEXANDER A. SAMARSKII ◽  
PETR P. MATUS ◽  
PETR N. VABISHCHEVICH

Nowadays the general theory of operator-difference schemes with operators acting in Hilbert spaces has been created for investigating the stability of the difference schemes that approximate linear problems of mathematical physics. In most cases a priori estimates which are uniform with respect to the t norms are usually considered. In the investigation of accuracy for evolutionary problems, special attention should be given to estimation of the difference solution in grid analogs of integral with respect to the time norms. In this paper a priori estimates in such norms have been obtained for two-level operator-difference schemes. Use of that estimates is illustrated by convergence investigation for schemes with weights for parabolic equation with the solution belonging to [Formula: see text].


2003 ◽  
Vol 3 (2) ◽  
pp. 313-329 ◽  
Author(s):  
Piter Matus

AbstractIn the present paper, a priori estimates of the stability in the sense of the initial data of the difference schemes approximating quasilinear parabolic equations and nonlinear transfer equation have been obtained. The basic point is connected with the necessity of estimating all derivatives entering into the nonlinear part of the difference equations. These estimates have been proved without any assumptions about the properties of the differential equations and depend only on the behavior of the initial and boundary conditions. As distinct from linear problems, the obtained estimates of stability in the general case exist only for the finite instant of time t 6 t0 connected with the fact that the solution of the Riccati equation becomes infinite. is already associated with the behavior of the second derivative of the initial function and coincides with the time of the exact solution destruction (heat localization in the peaking regime). A close relation between the stability and convergence of the difference scheme solution is given. Thus, not only a priori estimates for stability have been established, but it is also shown that the obtained conditions permit exact determination of the time of destruction of the solution of the initial boundary value problem for the original nonlinear differential equation in partial derivatives. In the present paper, concrete examples confirming the theoretical conclusions are given.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdullah Al-Mamun ◽  
S. M. Arifuzzaman ◽  
Sk. Reza-E-Rabbi ◽  
Umme Sara Alam ◽  
Saiful Islam ◽  
...  

AbstractThe perspective of this paper is to characterize a Casson type of Non-Newtonian fluid flow through heat as well as mass conduction towards a stretching surface with thermophoresis and radiation absorption impacts in association with periodic hydromagnetic effect. Here heat absorption is also integrated with the heat absorbing parameter. A time dependent fundamental set of equations, i.e. momentum, energy and concentration have been established to discuss the fluid flow system. Explicit finite difference technique is occupied here by executing a procedure in Compaq Visual Fortran 6.6a to elucidate the mathematical model of liquid flow. The stability and convergence inspection has been accomplished. It has observed that the present work converged at, Pr ≥ 0.447 indicates the value of Prandtl number and Le ≥ 0.163 indicates the value of Lewis number. Impact of useful physical parameters has been illustrated graphically on various flow fields. It has inspected that the periodic magnetic field has helped to increase the interaction of the nanoparticles in the velocity field significantly. The field has been depicted in a vibrating form which is also done newly in this work. Subsequently, the Lorentz force has also represented a great impact in the updated visualization (streamlines and isotherms) of the flow field. The respective fields appeared with more wave for the larger values of magnetic parameter. These results help to visualize a theoretical idea of the effect of modern electromagnetic induction use in industry instead of traditional energy sources. Moreover, it has a great application in lung and prostate cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document