Investigation of Cavity Development in a Cellular Spheroid Depending on the Mechanisms of Active Intercellular Interactions

2021 ◽  
Vol 56 (2) ◽  
pp. 153-163
Author(s):  
S. A. Logvenkov ◽  
E. N. Yudina
2014 ◽  
Vol 87 ◽  
pp. 96-99 ◽  
Author(s):  
Oliver Frey ◽  
Patrick M. Misun ◽  
Jörg Rothe ◽  
Andreas Hierlemann

2001 ◽  
Vol 8 (3) ◽  
pp. 153-168 ◽  
Author(s):  
MARÍA YÁÑEZ-MÓ ◽  
MARÍA MITTELBRUNN ◽  
FRANCISCO SÁNCHEZ-MADRID

1971 ◽  
Vol 179 (1055) ◽  
pp. 139-156 ◽  

The tabby syndrome in the mouse (which is common to the sex-linked gene for tabby and autosomal genes for crinkled and downless) affects the coat, the sinus hairs, the teeth, many glands and some surface features like tail rings, plicae digitales and the papilla vallata of the tongue. All these structures develop by the downgrowth of solid epithelial buds into the underlying mesenchyme. Organs which arise by invagination (like the neural tube or the otic vesicles and certain glands) are not affected by the tabby syndrome. The rudiments of glands and sinus hairs are reduced in size, and if reduction goes beyond a critical point, stunted organs are formed or, more commonly, the rudiments regress altogether. The same is true for the teeth and apparently for the whole syndrome. Measurements show the same situation in Ta ♂♂(and Ta/Ta ♀♀) and in heterozygous Ta / + ♀♀. As in Ta ♂♂ and Ta/Ta ♀♀ there cannot be any doubt that a threshold mechanism is involved, there is no reason to assume that, in Ta / + ♀♀, the identical defects are derived clonally from ancestral cells in which the Xchromosome carrying the normal allele has been inactivated. Whereas the Ta / + phenotype does not give any evidence that the Ta locus is involved in X-chromosome inactivation, the possibility cannot be ruled out that, if inactivation should actually take place on the cellular level, the macroscopic phenotype could be the result of intercellular interactions along with the effects of threshold mechanisms.


2021 ◽  
Vol 67 (1) ◽  
pp. 34-41
Author(s):  
E.D. Khilazheva ◽  
A.V. Morgun ◽  
E.B. Boytsova ◽  
A.I. Mosiagina ◽  
A.N. Shuvaev ◽  
...  

In the central nervous system of mammals, there are specialized areas in which neurogenesis — neurogenic niches — is observed in the postnatal period. It is believed that astrocytes in the composition of neurogenic niches play a significant role in the regulation of neurogenesis, and therefore they are considered as a promising “target” for the possible control of neurogenesis, including the use of optogenetics. In the framework of this work, we formed an in vitro model of a neurogenic niche, consisting of cerebral endothelial cells, astrocytes and neurospheres. Astrocytes in the neurogenic niche model expressed canalorodopsin ChR2 and underwent photoactivation. The effect of photoactivated astrocytes on the expression profile of neurogenic niche cells was evaluated using immunocytochemical analysis methods. It was found that intact astrocytes in the composition of the neurogenic niche contribute to neuronal differentiation of stem cells, as well as the activation of astroglia expressing photosensitive proteins, changes the expression of molecules characterized by intercellular interactions of pools of resting and proliferating cells in the composition of the neurogenic niche with the participation of NAD+ (Cx43, CD38, CD157), lactate (MCT1). In particular, the registered changes reflect a violation of the paracrine intercellular interactions of two subpopulations of cells, one of which acts as a source of NAD+, and the second as a consumer of NAD+ to ensure the processes of intracellular signal transduction; a change in the mechanisms of lactate transport due to aberrant expression of the lactate transporter MCT1 in cells forming a pool of cells developing along the neuronal path of differentiation. In general, with photostimulation of niche astrocytes, the total proliferative activity increases mainly due to neural progenitor cells, but not neural stem cells. Thus, optogenetic activation of astrocytes can become a promising tool for controlling the activity of neurogenesis processes and the formation of a local proneurogenic microenvironment in an in vitro model of a neurogenic niche.


2019 ◽  
Vol 35 (8) ◽  
pp. 939-945
Author(s):  
Guangyu Li ◽  
Hua Ding ◽  
Jian Wang ◽  
Wenjing Zhang ◽  
Ning Zhang ◽  
...  

1983 ◽  
Vol 29 (101) ◽  
pp. 28-47 ◽  
Author(s):  
A. Iken ◽  
H. Röthlisberger ◽  
A. Flotron ◽  
W. Haeberli

Abstract Results of systematic movement studies carried out by means of an automatic camera on Unteraargletscher since 1969 are discussed together with supplementary theodolite measurements made at shorter intervals and over a longer section of the glacier. In addition to the typical spring/early summer maximum of velocity known from other glaciers, an upward movement of up to 0.6 m has been recorded at the beginning of the melt season. It was followed, after a few fluctuations of the vertical velocity, by an equal but slower downward movement which continued at an almost constant rate for about three months. Possible explanations of the uplift are discussed, the most satisfactory explanation being water storage at the bed. The observations then suggest that this storage system is efficiently connected with the main subglacial drainage channels only during times of very high water pressure in the channels. Detailed measurements showed that the times of maximum horizontal velocity coincided with the times of maximum upward velocity rather than with the times when the elevation of the surveyed poles had reached a maximum. On the basis of the hypothesis of water storage at the bed this finding means that the sliding velocity is influenced mainly by the subglacial water pressure and the actual, transient stage of cavity development, while the amount of stored water is of lesser influence.


Sign in / Sign up

Export Citation Format

Share Document