scholarly journals The Uplift of Unteraargletscher at the Beginning of the Melt Season—A Consequence of Water Storage at the Bed?

1983 ◽  
Vol 29 (101) ◽  
pp. 28-47 ◽  
Author(s):  
A. Iken ◽  
H. Röthlisberger ◽  
A. Flotron ◽  
W. Haeberli

Abstract Results of systematic movement studies carried out by means of an automatic camera on Unteraargletscher since 1969 are discussed together with supplementary theodolite measurements made at shorter intervals and over a longer section of the glacier. In addition to the typical spring/early summer maximum of velocity known from other glaciers, an upward movement of up to 0.6 m has been recorded at the beginning of the melt season. It was followed, after a few fluctuations of the vertical velocity, by an equal but slower downward movement which continued at an almost constant rate for about three months. Possible explanations of the uplift are discussed, the most satisfactory explanation being water storage at the bed. The observations then suggest that this storage system is efficiently connected with the main subglacial drainage channels only during times of very high water pressure in the channels. Detailed measurements showed that the times of maximum horizontal velocity coincided with the times of maximum upward velocity rather than with the times when the elevation of the surveyed poles had reached a maximum. On the basis of the hypothesis of water storage at the bed this finding means that the sliding velocity is influenced mainly by the subglacial water pressure and the actual, transient stage of cavity development, while the amount of stored water is of lesser influence.

1983 ◽  
Vol 29 (101) ◽  
pp. 28-47 ◽  
Author(s):  
A. Iken ◽  
H. Röthlisberger ◽  
A. Flotron ◽  
W. Haeberli

AbstractResults of systematic movement studies carried out by means of an automatic camera on Unteraargletscher since 1969 are discussed together with supplementary theodolite measurements made at shorter intervals and over a longer section of the glacier. In addition to the typical spring/early summer maximum of velocity known from other glaciers, an upward movement of up to 0.6 m has been recorded at the beginning of the melt season. It was followed, after a few fluctuations of the vertical velocity, by an equal but slower downward movement which continued at an almost constant rate for about three months. Possible explanations of the uplift are discussed, the most satisfactory explanation being water storage at the bed. The observations then suggest that this storage system is efficiently connected with the main subglacial drainage channels only during times of very high water pressure in the channels. Detailed measurements showed that the times of maximum horizontal velocity coincided with the times of maximum upward velocity rather than with the times when the elevation of the surveyed poles had reached a maximum. On the basis of the hypothesis of water storage at the bed this finding means that the sliding velocity is influenced mainly by the subglacial water pressure and the actual, transient stage of cavity development, while the amount of stored water is of lesser influence.


1979 ◽  
Vol 23 (89) ◽  
pp. 430-432 ◽  
Author(s):  
A. Iken ◽  
A. Flotron ◽  
W. Haeberli ◽  
H. Röthlisberger

Abstract The results of systematic movement studies carried out by means of an automatic camera on the Unteraargletscher since 1969 (Flotron, 1973) are discussed together with more recent findings from theodolite measurements made at shorter intervals and over a longer section of the glacier. In addition to the typical spring/early-summer maximum of velocity known from other glaciers, an upward movement of up to 0.6 m has been recorded at the beginning of the melt season. It was followed, after various fluctuations of the vertical velocity, by a similar but slower downward movement which continued at an almost constant rate for about three months. The uplift was not confined to the section covered by the camera but occurred nearly simultaneously in profiles located 1 km below and 2 km above. The times of maximum upward velocity (increases of up to 140 mm/d) coincided approximately with periods of large horizontal velocity and occurred after increases of melt-rate. The following explanations for the variations of vertical velocity are considered: (1) Changes of longitudinal strain-rate. (2) Changes of the sliding velocity in a channel of variable width and with a bed slope deviating from horizontal. (3) Changes of volume due to opening or closing of crevasses. (4) Swelling or contraction of veins at the grain edges. (5) Growth (and closure) of cavities in the interior of the glacier. (6) Changes of large-scale water storage at the bed. Although all of the mechanisms (1)–(5) have some effect on the vertical ice movement, they cannot account for the observed variations of vertical velocity. We therefore conclude that large-scale water storage at the bed is the main cause of the uplift. Apparently the storage system is efficiently connected with the main subglacial drainage channels only during times of very high water pressure in the channels. The findings are of some interest to the concepts of glacier sliding: As mentioned above the maxima of horizontal velocity—and thus of the sliding velocity—have not been measured at the time when the storage had attained a maximum, but at the time of maximum vertical velocity, which we assume to be the time of most rapid growth of cavities at the bed. This behaviour of the sliding velocity agrees with that predicted by a simple finite-element model of the basal ice on a wavy bed with water-filled cavities. In particular, the model shows that the sliding velocity is larger during the process of cavity growth than at the final stage when the cavities have grown to the size which is stable for the applied water pressure.


1979 ◽  
Vol 23 (89) ◽  
pp. 430-432 ◽  
Author(s):  
A. Iken ◽  
A. Flotron ◽  
W. Haeberli ◽  
H. Röthlisberger

AbstractThe results of systematic movement studies carried out by means of an automatic camera on the Unteraargletscher since 1969 (Flotron, 1973) are discussed together with more recent findings from theodolite measurements made at shorter intervals and over a longer section of the glacier.In addition to the typical spring/early-summer maximum of velocity known from other glaciers, an upward movement of up to 0.6 m has been recorded at the beginning of the melt season. It was followed, after various fluctuations of the vertical velocity, by a similar but slower downward movement which continued at an almost constant rate for about three months. The uplift was not confined to the section covered by the camera but occurred nearly simultaneously in profiles located 1 km below and 2 km above. The times of maximum upward velocity (increases of up to 140 mm/d) coincided approximately with periods of large horizontal velocity and occurred after increases of melt-rate.The following explanations for the variations of vertical velocity are considered: (1) Changes of longitudinal strain-rate. (2) Changes of the sliding velocity in a channel of variable width and with a bed slope deviating from horizontal. (3) Changes of volume due to opening or closing of crevasses. (4) Swelling or contraction of veins at the grain edges. (5) Growth (and closure) of cavities in the interior of the glacier. (6) Changes of large-scale water storage at the bed.Although all of the mechanisms (1)–(5) have some effect on the vertical ice movement, they cannot account for the observed variations of vertical velocity. We therefore conclude that large-scale water storage at the bed is the main cause of the uplift. Apparently the storage system is efficiently connected with the main subglacial drainage channels only during times of very high water pressure in the channels.The findings are of some interest to the concepts of glacier sliding: As mentioned above the maxima of horizontal velocity—and thus of the sliding velocity—have not been measured at the time when the storage had attained a maximum, but at the time of maximum vertical velocity, which we assume to be the time of most rapid growth of cavities at the bed. This behaviour of the sliding velocity agrees with that predicted by a simple finite-element model of the basal ice on a wavy bed with water-filled cavities. In particular, the model shows that the sliding velocity is larger during the process of cavity growth than at the final stage when the cavities have grown to the size which is stable for the applied water pressure.


1983 ◽  
Vol 29 (101) ◽  
pp. 3-19 ◽  
Author(s):  
Robert Bindschadler

AbstractThe effect of pressurized subglacial water on the sliding process is examined by a parameter called the “bed separation index”. This index indicates the relative extent of cavity formation by combining the effects of variation of bed-normal stress across undulations (Kamb, 1970) and steady-state water pressure in a Röthlisberger conduit at the glacier bed. Data from three glaciers of widely varying size are used to test the correlation of the bed separation index with inferred sliding rates. For Columbia Glacier and Ice Stream B in West Antarctica it is shown that high water pressure enhances sliding. More complete data from the third test case. Variegated Glacier, are used to compare a number of possible formulations of a “sliding law”. A Weertman-type power law (exponent c. 3), modified for the effect of subglacial water pressure, appears to be most preferable. Other formulations, including the “lubrication factor” hypothesis used by Budd (1975) are tentatively rejected. Consideration of the temporal variations of the “bed separation index” indicate that, on short time scales of days and weeks, variations of water pressure can dominate the sliding process. A rapid order-of-magnitude increase in water discharge causes a hundredfold transient increase in the water pressure. A bi-modal hydraulic regime is revealed for water flow transverse to the direction of main ice flow. This behavior is in accord with the observation of a sudden acceleration of the ice due to increased sliding in early summer or following heavy rainstorms.


2000 ◽  
Vol 31 ◽  
pp. 222-228 ◽  
Author(s):  
Gwenn E. Flowers ◽  
Garry K. C. Clarke

AbstractOutbursts of subglacial water from numerous alpine glaciers have been observed and documented. Such events tend to occur in spring and are thus attributed to an inability of the winter subglacial drainage system (characterized by high water pressure and low capacity) to accommodate a sudden and profuse influx of surface meltwater. Prior to a release event, bursts of glacier motion are common, and the release then precipitates the restoration of summer plumbing that damps or terminates surface acceleration. The events bear witness to the importance of interactions between surface melt, runoff, en-glacial water storage and internal routing, in addition to subglacial drainage morphology. Using a distributed numerical model to simultaneously solve surficial, englacial and subglacial water-transport equations, we investigate the role of these components in a hydro-mechanical event observed at Trapridge Glacier, YukonTerritory, Canada, in July 1990.


1983 ◽  
Vol 29 (101) ◽  
pp. 3-19 ◽  
Author(s):  
Robert Bindschadler

Abstract The effect of pressurized subglacial water on the sliding process is examined by a parameter called the “bed separation index”. This index indicates the relative extent of cavity formation by combining the effects of variation of bed-normal stress across undulations (Kamb, 1970) and steady-state water pressure in a Röthlisberger conduit at the glacier bed. Data from three glaciers of widely varying size are used to test the correlation of the bed separation index with inferred sliding rates. For Columbia Glacier and Ice Stream B in West Antarctica it is shown that high water pressure enhances sliding. More complete data from the third test case. Variegated Glacier, are used to compare a number of possible formulations of a “sliding law”. A Weertman-type power law (exponent c. 3), modified for the effect of subglacial water pressure, appears to be most preferable. Other formulations, including the “lubrication factor” hypothesis used by Budd (1975) are tentatively rejected. Consideration of the temporal variations of the “bed separation index” indicate that, on short time scales of days and weeks, variations of water pressure can dominate the sliding process. A rapid order-of-magnitude increase in water discharge causes a hundredfold transient increase in the water pressure. A bi-modal hydraulic regime is revealed for water flow transverse to the direction of main ice flow. This behavior is in accord with the observation of a sudden acceleration of the ice due to increased sliding in early summer or following heavy rainstorms.


2019 ◽  
Vol 16 (1) ◽  
pp. 25-35 ◽  
Author(s):  
N.A. Komaromi ◽  
A.V. Putchkov ◽  
V.Yu. Nazarenko

A total of 54 species in 35 genera of Curculionidae are registered in the urbocenoses of Kharkiv city. Only three species, Exomias pellucidus, Otiorhynchus raucus and Ot. ovatus, are recorded as dominants. Some other species (Urometopus nemorum, Sciaphobus squalidus and Glocianus punctiger) are sporadically noted in some sites as subdominants. The total number of species turned out to be higher in the herpetobios of plantings at periphery (31), slightly lower in private farmlands of the city (21), parks and plantings of the center (17 each), but minimal in suburban forests (11 species). The highest quantity of specimens were observed for the plantations of the center and margins of city: nevertheless, minimal quantity of specimens was registered at parks and woods. The maximum number of species (including all cenoses) was recorded from the end of April to first decade of May (28 species). From May to the end of June 15–18 species were registered. Ten species were recorded at July, and only six species at August. A slight rise was noted from the end of August to mid-September (11 species). In biotopes where Exomias pellucidus appeared to be the monodominant, the seasonal dynamic density of weevils reached a peak at late May or early June, but the significant decline was observed from early June to July. At the sites with several dominants, two or three peaks were registered: at spring (May) and at mid-summer (end of June or beginning of July). Furthermore, the number of weevils decreased gradually, but some species of Curculionidae were rather abundant even from the end of summer to September–October. The spring increase is reasoned by high density of species in the genus Otiorhynchus; the peak in early summer (maximum) is caused by the increased activity of majority of dominant species; the autumn peak is also caused by the high number of species of the genus Otiorhynchus. The level of sex index (by the example of E. pellucidus) differed significantly at all plots. It was higher for the plantations at the periphery of the city (0.70), and it was minimal at private farmlands (0.20). Relative conjugacy of sex index and dynamic density were not observed: the maximum abundances of quantity of Curculionidae were recorded 20–30 days earlier than the maximal numbers of the sex index.


1989 ◽  
Vol 35 (120) ◽  
pp. 201-208 ◽  
Author(s):  
Peter Jansson ◽  
Roger LeB. Hooke

AbstractTiltmeters that can detect changes in slope of a glacier surface as small as 0.1 μ rad have been used on Storglaciären. The records obtained to date have been from the upper part of the ablation area, where the bed of the glacier is overdeepened. A total of 82 d of records has been obtained for various time periods between early June and early September.There is generally a gradual change in inclination of the glacier surface over periods of several days, but these changes do not appear to be systematic. In particular, they are not consistent with vertical movements of stakes located 2–3 ice thicknesses away from the tiltmeters. This suggests that the tiltmeters are sensing disturbances over areas with diameters comparable to the local ice thickness.Superimposed on these trends are diurnal signals suggesting rises and falls of the surface just up-glacier from the riegel that bounds the overdeepening on its down-glacier end. These may be due to waves of high water pressure originating in a crevassed area near the equilibrium line. If this interpretation is correct, the waves apparently move down-glacier at speeds of 20–60 m h−1and become sufficiently focused, either by the bed topography or by conduit constrictions, to result in local uplift of the surface. Also observed are abrupt tilts towards the glacier center line shortly after the beginning of heavy rainstorms. These appear to be due to longitudinal stretching as the part of the glacier below the riegel accelerates faster than that above. Water entering the glacier by way of a series of crevasses over the riegel is believed to be responsible for this differential acceleration. In June 1987, a dramatic event was registered, probably reflecting the initial summer acceleration of the glacier.


1958 ◽  
Vol 9 (4) ◽  
pp. 546 ◽  
Author(s):  
H Anderson

A history of the nomenclature of the littorinid genus, Bembicium Phllippi, 1846, and its characters are given, and the anatomy of species of the genus is discussed. Three species are recognized and redescribed: a reef-living species, B. nanum (Lamarck); an estuarine species, B. auratum (Quoy & Gaimard); and the species B. melanostoma (Gmelin) which normally inhabits sheltered bays and inlets. Although all are intertidal animals, and show some measure of adaptability, each appears to be best suited to a particular habitat. B. melanostoma and B. nanum are usually found where the chlorinity of the water is close to that of the sea. B. auratum can withstand considerable variation in the chlorinity of its environment for periods of time which are not likely to be exceeded in its normal habitat. B. melanostoma mostly lives at higher tidal levels than B. nanum. In the aquarium B. nanum proved the most susceptible to desiccation. The egg masses of B. melanostoma contain fewer and larger eggs than those of B. auratum. In the laboratory spawning of B. auratum occurred during the spring and early summer. Under the same conditions specimens of B. melanostoma deposited eggs in October. The differences between the eggs and their development, and between the times of spawning of the two species collected from different littoral regions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document