Constructing solutions of the navier-stokes equations for a fluid layer between moving parallel plates at low and moderate reynolds numbers

2013 ◽  
Vol 54 (1) ◽  
pp. 44-48
Author(s):  
A. G. Petrov
2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Author(s):  
Marcel Escudier

In this chapter it is shown that solutions to the Navier-Stokes equations can be derived for steady, fully developed flow of a constant-viscosity Newtonian fluid through a cylindrical duct. Such a flow is known as a Poiseuille flow. For a pipe of circular cross section, the term Hagen-Poiseuille flow is used. Solutions are also derived for shear-driven flow within the annular space between two concentric cylinders or in the space between two parallel plates when there is relative tangential movement between the wetted surfaces, termed Couette flows. The concepts of wetted perimeter and hydraulic diameter are introduced. It is shown how the viscometer equations result from the concentric-cylinder solutions. The pressure-driven flow of generalised Newtonian fluids is also discussed.


1971 ◽  
Vol 47 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Jon Lee

The truncated Burgers models have a unique equilibrium state which is defined continuously for all the Reynolds numbers and attainable from a realizable class of initial disturbances. Hence, they represent a sequence of convergent approximations to the original (untruncated) Burgers problem. We have pointed out that consideration of certain degenerate equilibrium states can lead to the successive turbulence-turbulence transitions and finite-jump transitions that were suggested by Case & Chiu. As a prototype of the Navier–Stokes equations, Burgers model can simulate the initial-value type of numerical integration of the Fourier amplitude equations for a turbulent channel flow. Thus, the Burgers model dynamics display certain idiosyncrasies of the actual channel flow problem described by a truncated set of Fourier amplitude equations, which includes only a modest number of modes due to the limited capability of the computer at hand.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


Author(s):  
Guillermo E. Ovando ◽  
Juan C. Prince ◽  
Sandy L. Ovando

Fluid dynamics for a Newtonian fluid in the absence of body forces in a two-dimensional cavity with top and bottom curved walls was studied numerically. The vertical walls are fixed and the curved walls are in motion. The Navier-Stokes equations were solved using the finite element method combined with the operator splitting scheme. We analyzed the behaviour of the velocity fields, the vorticity fields and the velocity profiles of the fluid inside the cavity. The analysis was carried out for two different Reynolds numbers of 50 and 500 with two ratios (R = 1, −1) of the top to the bottom curved lid speed. For these values of parameters the flow is characterized by vortex formation inside the cavity. The spatial symmetry on the flow patterns are also investigated. We found that when the velocities of the top and bottom walls have opposite direction only one cell is formed in the central part of the cavity; however when the velocities of the top and bottom walls have the same direction the vortex formation inside the cavity is more complex.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


Sign in / Sign up

Export Citation Format

Share Document