Potential and matrix elements of the hamiltonian of internal rotation in molecules in the basis set of Mathieu functions

2015 ◽  
Vol 119 (2) ◽  
pp. 191-194 ◽  
Author(s):  
V. V. Turovtsev ◽  
Yu. D. Orlov ◽  
A. N. Tsirulev
Author(s):  
А.Н. Белов ◽  
В.В. Туровцев ◽  
Ю.Д. Орлов

Рассмотрена погрешность алгоритма аппроксимации функций Матье рядами Фурье, когда коэффициенты ряда Фурье представлены сходящимися цепными дробями. На основании проведенного анализа получены рекуррентные соотношения для абсолютной и относительной погрешностей удерживаемых звеньев цепной дроби и коэффициентов фурье-разложения. Предложен метод оценки точности расчета элементов матрицы гамильтониана торсионного уравнения Шрёдингера в базисе функций Матье. Эффективность предложенного алгоритма подтверждена численными примерами The dependence for the Hamiltonian matrix elements of the Schrodinger torsion equation on the calculation errors of the Mathieu basis set is considered. The Mathieu functions are represented with continued fractions in this study. The analysis of the Mathieu function approximation algorithm using Fourier series expansion is carried out when the coefficients of the Fourier series are represented by convergent continued fractions. It is shown that the major contribution to the errors at the Fourier coefficient calculation is made by the error accumulating in the corresponding elements of the continued fraction. Recurrence relations for the absolute and relative errors of the kept elements of the continued fraction and the Fourier expansion coefficients are obtained. It is shown and illustrated by a numerical example that the absolute and relative errors of the Fourier expansion coefficients in the proposed algorithm are negligible. It is noted that the maximum relative errors of continued fraction are in the highest elements of the kept part. The results of our work are used to estimate the calculation error in the integrals containing Mathieu functions. These integrals constitute the Hamiltonian matrix elements of the Schr¨odinger torsion equation. We developed an algorithm to estimate of the calculation accuracy of the Hamiltonian matrix elements of the Schr¨odinger torsion equation in the basis set of Mathieu functions. We provide the example of this algorithm. The results of the work indicate the adequacy and effectiveness at the application of the Mathieu function basis set to the solution of the Schrdinger torsion equation.¨


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


2000 ◽  
Vol 112 (13) ◽  
pp. 5624-5632 ◽  
Author(s):  
Andreas Nicklass ◽  
Kirk A. Peterson ◽  
Andreas Berning ◽  
Hans-Joachim Werner ◽  
Peter J. Knowles

2020 ◽  
Author(s):  
Oinam Meitei ◽  
Shannon Houck ◽  
Nicholas Mayhall

We present a practical approach for computing the Breit-Pauli spin-orbit matrix elements of multiconfigurational systems with both spin and spatial degeneracies based on our recently developed RAS-nSF-IP/EA method (JCTC, 15,<br>2278, 2019). The spin-orbit matrix elements over all the multiplet components are computed using a single one-particle reduced density matrix as a result of the Wigner-Eckart theorem. A mean field spin-orbit approximation was used to account for the two-electron contributions. Basis set dependence as well as the effect of including additional excitations is presented. The effect of correlating the core and semi-core orbitals is also examined. Surprisingly accurate results are obtained for spin-orbit coupling constants, despite the fact that the efficient wavefunction approximations we explore neglect the bulk of dynamical correlation.<br>


1992 ◽  
Vol 3 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Christopher Plant ◽  
James E. Boggs ◽  
John N. Macdonald ◽  
Gwilym A. Williams

The interpretation of the circular dichroism (c. d.) of coordination compounds is discussed with particular reference to the ligand field transitions of d 3 and low-spin d 6 systems. The experimental crystal spectra indicate by their large intensities that the solution spectra have to be interpreted on the basis of large cancellations caused by the overlapping of positive and negative c. d. contributions from closely lying energy levels. Some quantitative consequences of this have been derived. Symmetry considerations and the angular overlap model have been applied to tris(bidentate) and cis -bis(bidentate) chromophores which in most cases have been considered ortho-axial except for the perturbation due to the chelation. This perturbation and the chirality caused by the chelation have been described in terms of the small angular parameters ( δ and ϵ ) which represent a displacement of the ligating atoms, the ligators, away from the ortho-axial positions. The molecular orbital orientation of the angular overlap model has been demonstrated, and the ligand field perturbation within this model has been given as a sum of a σ and two different π contributions, corresponding to ligator π orbitals vertical and parallel to the plane of the chelating ligands. For the σ part of the perturbation, which is considered the most important part, the matrix elements connecting orbitals within each cubic subset ( e and t 2 ), for some matrix elements in contrast with the results of the electrostatic model, do not depend on δ and ϵ to first order. However, e and t 2 orbitals are connected by σ terms, first order in δ and ϵ . The perturbation energies can also be separated in a different way, also in order of decreasing importance, the regularly octahedral perturbation, the non-octahedral orthoaxial perturba­tion and finally the perturbation due to chelation. It is recommended to treat d n systems by considering first and together the effect of the octahedral part of the perturbation and that caused by the interelectronic repulsion, and diagonalize with respect to these two perturba­tions before the smaller perturbation contributions are considered. This can be done within the expanded radial function model, which considers the interelectronic repulsion parametrizable as in spherical symmetry. With the purpose of illuminating this the field strength series of ligands, ordering the ligands according to their values of ∑ = ∆/ B Racah , has been given. ∑ is the parameter of the expanded radial function model which determines the extent of the mixing of pure cubic subconfigurations. The symmetry restrictions imposed upon ligand field operators in order to make them able to contribute to rotational strengths are discussed on the basis of a rotational strength pseudo tensor. When this is expressed with respect to our standard basis functions it can be written as a symmetrical matrix with the same symmetry properties as the corresponding energy matrix except for sign changes by improper rotations. The parentage problem for inter­relating absolute configurations is discussed also on the basis of the tensor. A comparison between the results of the angular overlap model and those of the electro­static model is made. Throughout the usual real d -functions have served as our limited basis set, and these functions together with the real p -functions define the standard octahedral irreducible representations. Functions belonging to these standard octahedral bases are generally not symmetry adapted with respect to our whole gerade perturbation, but they are symmetry adapted to the main part of it, the (holohedrized) octahedral part. Re-diagonalization of the whole perturbation with respect to functions which are diagonal for the combined perturba­tions of the holohedrized octahedral ligand field and the interelectronic repulsion, has the advantage of moving by far most of the gerade lower symmetry perturbation into the diagonal. This means that the energy levels become described almost completely by linear combina­tions of our standard cubic basis functions which belong to the same irreducible representa­tion of the octahedral group, but which are symmetry adapted to the whole perturbation. These functions will, in general, be connected by small non-diagonal elements which mix the purely gerade-cubic levels. Since the polarization properties of the c. d. are governed by the directions of the magnetic dipole transition moments involved, they can be directly obtained for the linear combinations mentioned, on the basis of the very simple polarization properties of the standard cubic basis components.


1987 ◽  
Vol 40 (11) ◽  
pp. 1783 ◽  
Author(s):  
NV Riggs ◽  
L Radom

Optimization of the geometries of various stationary structures of 1,1-dimethylhydrazine has been carried out with the 3-21G and 3-21G(N*) basis sets, and the energies of each of the latter optimized structures have been evaluated with the 6.31G* basis set. The gauche form with a (mean) internal rotational angle near 80� (hydrazine, approx. 90�) is the lowest-energy form. After zero-point vibrational -energy corrections, the anti form lies in a shallow well 14kJ mol-1 higher on the potential-energy surface for internal rotation, and the transition structure connecting them lies approx. 1 kJ mol-1 higher still. The anti form is thus a true equilibrium species, unlike the case for hydrazine, but constitutes less than 0.5% of the molecules present at room temperature. It is estimated to have a half-life of less than 10 ps , so its observation by present physical methods may prove to be difficult. The barrier to internal rotation via the syn form (41kJ mol-1) coincides with that for hydrazine. gem-Dimethyl substitution in hydrazine leads to a small rise (1-2 kJ mol-1) in the barrier to inversion at the unsubstituted nitrogen atom, but to an unexpectedly high (by 8-9 kJ mol-1) calculated barrier to inversion at the substituted centre, whether the result be referred to the barrier in hydrazine or to that in dimethylamine. Calculated NH stretching frequencies for the gauche form show a spacing much larger than that for 'simple' primary amines, as is found experimentally.


Sign in / Sign up

Export Citation Format

Share Document