The Effect of Atmosphere Composition on the Mechanism of Destruction of a Boride Coating on the Surface of a Die Steel during Thermal Cycling

2020 ◽  
Vol 121 (6) ◽  
pp. 590-596
Author(s):  
N. B. Pugacheva ◽  
T. M. Bykova ◽  
L. M. Zamaraev
2017 ◽  
Vol 114 ◽  
pp. 537-545 ◽  
Author(s):  
Jia Sun ◽  
Qian-Gang Fu ◽  
Rui-Mei Yuan ◽  
Kai-Yuan Dong ◽  
Jing-Jing Guo

2015 ◽  
Vol 18 (3) ◽  
pp. 280-284
Author(s):  
Dwi Tjahyaning Putranti ◽  
Oktia Kiki Triana
Keyword(s):  

Nilon termoplastik sebagai bahan basis gigi tiruan mulai menjadi pilihan perawatan. Salah satu sifat fisis nilontermoplastik yang menjadi perhatian dalam penggunaannya sebagai bahan basis gigi tiruan adalah stabilitas dimensi danstabilitas warna. Penggunaan basis gigi tiruan di rongga mulut dalam waktu tertentu akan mengakibatkan berbagaiperubahan sifat bahan. Salah satu metode yang dapat digunakan untuk mengevaluasi sifat suatu bahan yaitu thermalcycling. Sampel dibuat sesuai ADA No. 12 untuk uji perubahan dimensi dan ISO No. 1567 untuk uji stabilitas warna.Thermal cycling 70 cycles dan 300 cycles dilakukan pada masing-masing sampel perlakuan. Hasil uji dianalisismenggunakan uji ANOVA untuk mengetahui pengaruh thermal cycling terhadap perubahan dimensi dan stabilitas warnayang menunjukkan hasil signifikan (p < 0,05) dibandingkan kelompok kontrol, serta uji LSD yang menunjukkan terdapatperbedaan pengaruh thermal cycling terhadap perubahan dimensi dan stabilitas warna bahan basis gigi tiruan nilontermoplastik. Thermal cycling 70 cycle dan 300 cycle pada bahan basis gigi tiruan nilon termoplastik dapat meningkatkannilai perubahan dimensi dan menurunkan nilai stabilitas warna bahan basis gigi tiruan nilon termoplastik. Kesimpulan,penggunaan gigi tiruan selama 1 minggu dibandingkan 1 bulan menyebabkan perubahan dimensi semakin besar danberkurangnya stabilitas warna pada basis gigi tiruan nilon termoplastik.


2020 ◽  
Vol 14 (2) ◽  
pp. 6789-6800
Author(s):  
Vishal Jagota ◽  
Rajesh Kumar Sharma

Resistance to wear of hot die steel is dependent on its mechanical properties governed by the microstructure. The required properties for given application of hot die steel can be obtained with control the microstructure by heat treatment parameters. In the present paper impact of different heat treatment parameters like austenitizing temperature, tempering time, tempering temperature is studied using response surface methodology (RSM) and artificial neural network (ANN) to predict sliding wear of H13 hot die steel. After heat treating samples at austenitizing temperature of 1020°C, 1040°C and 1060°C; tempering temperature 540°C, 560°C and 580°C; tempering time 1hour, 2hours and 3hours, experimentation on pin-on-disc tribo-tester is done to measure the sliding wear of H13 die steel. Box-Behnken design is used to develop a regression model and analysis of variance technique is used to verify the adequacy of developed model in case of RSM. Whereas, multi-layer feed-forward backpropagation architecture with input layer, single hidden layer and an output layer is used in ANN. It was found that ANN proves to be a better tool to predict sliding wear with more accuracy. Correlation coefficient R2 of the artificial neural network model is 0.986 compared to R2 of 0.957 for RSM. However, impact of input parameter interactions can only be analysed using response surface method. In addition, sensitivity analysis is done to determine the heat treatment parameter exerting most influence on the wear resistance of H13 hot die steel and it showed that tempering time has maximum influence on wear volume, followed by tempering temperature and austenitizing temperature. The prediction models will help to estimate the variation in die lifetime by finding the amount of wear that will occur during use of hot die steel, if the heat treatment parameters are varied to achieve different properties.


2003 ◽  
Vol 779 ◽  
Author(s):  
T. John Balk ◽  
Gerhard Dehm ◽  
Eduard Arzt

AbstractWhen confronted by severe geometric constraints, dislocations may respond in unforeseen ways. One example of such unexpected behavior is parallel glide in unpassivated, ultrathin (200 nm and thinner) metal films. This involves the glide of dislocations parallel to and very near the film/substrate interface, following their emission from grain boundaries. In situ transmission electron microscopy reveals that this mechanism dominates the thermomechanical behavior of ultrathin, unpassivated copper films. However, according to Schmid's law, the biaxial film stress that evolves during thermal cycling does not generate a resolved shear stress parallel to the film/substrate interface and therefore should not drive such motion. Instead, it is proposed that the observed dislocations are generated as a result of atomic diffusion into the grain boundaries. This provides experimental support for the constrained diffusional creep model of Gao et al.[1], in which they described the diffusional exchange of atoms between the unpassivated film surface and grain boundaries at high temperatures, a process that can locally relax the film stress near those boundaries. In the grains where it is observed, parallel glide can account for the plastic strain generated within a film during thermal cycling. One feature of this mechanism at the nanoscale is that, as grain size decreases, eventually a single dislocation suffices to mediate plasticity in an entire grain during thermal cycling. Parallel glide is a new example of the interactions between dislocations and the surface/interface, which are likely to increase in importance during the persistent miniaturization of thin film geometries.


2016 ◽  
Vol 53 (3) ◽  
pp. 125-143
Author(s):  
S. González ◽  
M. González ◽  
J. Dominguez ◽  
F. Lasagni

Alloy Digest ◽  
1969 ◽  
Vol 18 (4) ◽  

Abstract Ultradie 3 is a high production tool and die steel of the high-carbon high-chromium type. It is deep hardening, non-deforming, and has high resistance to wear and compression. It is recommended for heavy duty tools and dies. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and bend strength as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-218. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PRESSURDIE-1 is an air-hardening hot work tool and die steel having high heat resistance and good high temperature strength properties. It is recommended for die casting dies, extrusion and forging dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-191. Producer or source: Continental Copper & Steel Industries Inc..


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract A. M. 3 Die Steel is a medium-carbon, 5% chromium tool and die steel having high resistance to heat checking and erosion of die-casting dies and other hot work tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-162. Producer or source: A. Milne & Company (Distributor).


Sign in / Sign up

Export Citation Format

Share Document