The Analysis of Microstructure and Texture Evolution in Polycrystal and Single Crystals of Nickel after Hydrostatic Extrusion Process

2020 ◽  
Vol 121 (13) ◽  
pp. 1273-1279
Author(s):  
M. Koralnik ◽  
B. Adamczyk-Cieslak ◽  
D. Moszczynska ◽  
M. Kulczyk ◽  
J. Mizera
2017 ◽  
Vol 2 (85) ◽  
pp. 80-85
Author(s):  
M. Koralnik ◽  
B. Adamczyk-Cieślak ◽  
M. Kulczyk ◽  
J. Mizera

Purpose: All results obtained in the present study allowed to analyse the changes in the microstructure and texture of the commercial 6060 aluminium alloy, after deformation process by severe plastic deformation. There were compare two deformation degree samples received by cumulative hydrostatic extrusion. Design/methodology/approach: The samples of the 6060 alloy were subjected to a onepass and three-passes extrusion process and next the age hardening. The microstructure changes were investigated by using transmission and scanning electron microscopy. To study the texture evolution the X-ray diffraction were made. Findings: The microscopic observations results presented the refinement of microstructure as a result of deformation process. The evolution of fibrous character of texture was observed. There were noted the disappearance of fibrous component <100> during subsequent deformation processes and generation the fibrous component <111> after high deformation degree. In addition, for each state, the presence of cubic texture component was recorded. Research limitations/implications: For the future research are planned to analyse changes in mechanical properties after hydrostatic extrusion combinate with age hardening of investigated materials. Originality/value: The paper focuses on the investigation of microstructure and texture evolution after modern method of plastic deformation.


2015 ◽  
Vol 817 ◽  
pp. 531-537 ◽  
Author(s):  
Tao Tang ◽  
Yi Chuan Shao ◽  
Da Yong Li ◽  
Ying Hong Peng

In order to study the influence of extrusion process on texture development of alloys, numerical simulation methods were used to simulate the round and shape extrusion process and deformation texture. Extrusion of Mg-Y magnesium alloy was carried out at the temperature of 673K with different ram speeds to verify the simulation results. Instead of using the Lagrangian FE method, the Arbitrary Lagrangian-Eulerian (ALE) method was employed in this study so that a more accurate description of the steady-state extrusion process can be achieved. By obtaining strain histories of specified material tracer particles, the coupling of deformation and crystal plasticity theory was applied to simulate the texture evolution in hot extrusion. The results showed that the texture simulation corresponded well with the experimental ones. The study proposes a method to analyze the steady-state extrusion process and texture evolution, and can be used as a useful tool in optimizing the extrusion process.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4932
Author(s):  
Guoqin Wu ◽  
Jianmin Yu ◽  
Leichen Jia ◽  
Wenlong Xu ◽  
Beibei Dong ◽  
...  

Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process.


PRICM ◽  
2013 ◽  
pp. 1401-1407
Author(s):  
TaeHyuk Lee ◽  
YoungJune Lee ◽  
YiHa Kim ◽  
HaGuk Jeong ◽  
JongHyeon Lee

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Xue ◽  
Shuaishuai Chen ◽  
Haijun Liu ◽  
Zhimin Zhang ◽  
Luying Ren ◽  
...  

The microstructure, deformation mechanisms, dynamic recrystallization (DRX) behavior, and texture evolution of AZ80 magnesium alloy were investigated by three-pass cyclic expansion-extrusion (CEE) tests. Optical microscopy (OM), electron back-scattered diffraction (EBSD), and X-ray diffraction (XRD) were employed to study microstructure, grain orientation, DRX mechanism, and texture evolution. The results show that the grain sizes decrease continuously with the increase of CEE pass. The grain refinement effect of the first pass is the most remarkable, and there appear a large number of twins. After three-pass CEE, a well-distributed structure with fine equiaxed grains is obtained. With the increase of CEE pass, the deformation mechanism changes from twinning to slipping and the DRX mechanism changes mainly from twinning-induced dynamic recrystallization (TDRX) to rotation dynamic recrystallization (RDRX) and then to continuous dynamic recrystallization (CDRX). The grain misorientation between the new grains and matrix grains deceases gradually, and a relatively small angle misorientation is obtained after three-pass CEE. Grain misorientations of the first two passes are attributed to TDRX and RDRX behaviors, respectively. The grain refinement changes the deformation and DRX mechanisms of CEE process, which leads the (0002) basal texture intensity first decrease and then increase suddenly. Eventually, the extremely strong basal texture is formed after three-pass CEE.


Sign in / Sign up

Export Citation Format

Share Document