The effect of deformation degree on the microstructure of the 6060 aluminium alloy

2017 ◽  
Vol 2 (85) ◽  
pp. 80-85
Author(s):  
M. Koralnik ◽  
B. Adamczyk-Cieślak ◽  
M. Kulczyk ◽  
J. Mizera

Purpose: All results obtained in the present study allowed to analyse the changes in the microstructure and texture of the commercial 6060 aluminium alloy, after deformation process by severe plastic deformation. There were compare two deformation degree samples received by cumulative hydrostatic extrusion. Design/methodology/approach: The samples of the 6060 alloy were subjected to a onepass and three-passes extrusion process and next the age hardening. The microstructure changes were investigated by using transmission and scanning electron microscopy. To study the texture evolution the X-ray diffraction were made. Findings: The microscopic observations results presented the refinement of microstructure as a result of deformation process. The evolution of fibrous character of texture was observed. There were noted the disappearance of fibrous component <100> during subsequent deformation processes and generation the fibrous component <111> after high deformation degree. In addition, for each state, the presence of cubic texture component was recorded. Research limitations/implications: For the future research are planned to analyse changes in mechanical properties after hydrostatic extrusion combinate with age hardening of investigated materials. Originality/value: The paper focuses on the investigation of microstructure and texture evolution after modern method of plastic deformation.

2006 ◽  
Vol 114 ◽  
pp. 145-150 ◽  
Author(s):  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Małgorzata Lewandowska ◽  
Wacław Pachla ◽  
Mariusz Kulczyk ◽  
...  

Hydrostatic extrusion can be viewed as one of the methods of Severe Plastic Deformation, SPD, for the fabrication of ultra-fine grained alloys which causes a significant increase in the mechanical properties such as tensile strength and hardness. In the present study the microstructure of 6082 aluminium alloy after hydrostatic extrusion was investigated. Hydroextrusion was performed in three steps with accumulated true strains of 1.34, 2.73 and 3.74 respectively. Microstructural observations were carried out using SEM, TEM and light microscopy. Grain and inclusion sizes, shapes and distribution were investigated in the HE processed samples. The study has shown that the hydrostatic extrusion process results in a profound refinement of both the grain size and the inclusions in 6082 aluminium alloy.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4932
Author(s):  
Guoqin Wu ◽  
Jianmin Yu ◽  
Leichen Jia ◽  
Wenlong Xu ◽  
Beibei Dong ◽  
...  

Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process.


1976 ◽  
Vol 98 (2) ◽  
pp. 335-342 ◽  
Author(s):  
R. W. Snidle ◽  
B. Parsons ◽  
D. Dowson

The paper presents a theoretical analysis of hydrodynamic lubrication in the hydrostatic extrusion process which includes a consideration of thermal effects in the lubricant film arising from the work of plastic deformation. A Newtonian lubricant with an exponential pressure-temperature-viscosity relationship has been assumed and allowance has been made for the effects of redundant deformation of the worked material. The results of the theory are compared with those from previous isothermal and solid friction theories.


1973 ◽  
Vol 95 (2) ◽  
pp. 113-122 ◽  
Author(s):  
R. W. Snidle ◽  
D. Dowson ◽  
B. Parsons

The authors describe a numerical procedure for the solution of the problem of hydro-dynamic lubrication in the hydrostatic extrusion process. The lubricant is assumed to be a Newtonian fluid and in this preliminary analysis it is assumed that the yield strength of the worked material remains constant. Elastic deformation of the billet as it enters and leaves the die is considered but this effect is found to have only a small influence upon the thickness of the lubricant film which is generated. Thermal effects arising from plastic deformation of the billet and viscous dissipation in the lubricant film are also considered. Theoretical results are presented showing the influence of die angle and reduction ratio upon values of film thickness and extrusion pressure for two materials.


2020 ◽  
Vol 121 (13) ◽  
pp. 1273-1279
Author(s):  
M. Koralnik ◽  
B. Adamczyk-Cieslak ◽  
D. Moszczynska ◽  
M. Kulczyk ◽  
J. Mizera

2015 ◽  
Vol 60 (2) ◽  
pp. 1437-1440 ◽  
Author(s):  
B. Leszczyńska-Madej ◽  
M.W. Richert ◽  
M. Perek-Nowak

AbstractProcesses of severe plastic deformation (SPD) are defined as a group of metalworking techniques in which a very large plastic strain is imposed on a bulk material in order to make an ultra-fine grained metal. The present study attempts to apply Equal-Channel Angular Pressing (ECAP), Hydrostatic Extrusion (HE) and combination of ECAP and HE to 99.5% pure aluminium. ECAP process was realized at room temperature for 16 passes through route Bc using a die having an angle of 90°. Hydrostatic extrusion process was performed with cumulative strain of 2.68 to attain finally wire diameter of d = 3 mm. The microstructure of the samples was investigated by means of transmission and scanning electron microscopy. Additionally, the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. The measured grain/subgrain size show, that regardless the mode of deformation process (ECAP, HE or combination of ECAP and HE processes), grain size is maintained at a similar level – equal to d = 0.55-0.59μm. A combination of ECAP and HE has achieved better properties than either single process and show to be a promising procedure for manufacturing bulk UFG aluminium.


2009 ◽  
Vol 424 ◽  
pp. 57-64 ◽  
Author(s):  
Michael Reich ◽  
S. Schöne ◽  
O. Kessler ◽  
M. Nowak ◽  
O. Grydin ◽  
...  

After the extrusion process most aluminium alloy profiles don´t satisfy the necessary strength requirements. An increase of strength can be obtained by age hardening of hardenable aluminium alloys. Age hardening includes the three steps of solution annealing, quenching and aging and is usually carried out in a separate process after extrusion. The integration of the sub-steps solution annealing and quenching in the extrusion process results in a marked reduction of the complete process chain. The applicability of this integration depends primarily on the quenching power of the cooling module and on the quench sensitivity of the aluminium alloy. Using the finite element method the non-steady-state process of quenching the profiles after leaving the extrusion press has been simulated. The boundary conditions for quenching are varied for a gas nozzle field and a spray cooling using heat transfer coefficients based on experiments. The simulation results support the design of gas nozzle fields or spray cooling for the extrusion process of different aluminium alloys.


2010 ◽  
Vol 97-101 ◽  
pp. 565-569
Author(s):  
J.M. Yu ◽  
Zhi Min Zhang ◽  
Bao Hong Zhang ◽  
Qiang Wang

The effects of extrusion ratios (15, 30, 45and 60) on microstructure and mechanical properties of ZK60 magnesium alloy after T5 treatment were investigated. The results show that mechanical properties increase with the increase of extrusion ratios from 15 to 45.However, when the extrusion ratio is increase to 60, each mechanical property is decreased severly.By comparison,in the extrusion ratio of 30, ZK60 magnesium alloy after T5 treatment has excellent comprehensive mechanical properties.Different degrees of dynamic recrystallization appeared in the extrusion process and induced precipitation of second phase.The precipitation of the second phase is beneficial to the grain refinement and meanwhile to the promotion of the strength.


Sign in / Sign up

Export Citation Format

Share Document