Possibility to Strengthen the Joint between a Titanium Alloy and Stainless Steel Formed by Diffusion Welding through an Interlayer

2018 ◽  
Vol 2018 (4) ◽  
pp. 341-347
Author(s):  
R. G. Khazgaliev ◽  
M. F. Imayev ◽  
R. R. Mulyukov
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1325
Author(s):  
Alexander Viktorovich Lavrishchev ◽  
Sergei Viktorovich Prokopev ◽  
Vadim Sergeevich Tynchenko ◽  
Aleksander Vladimirovich Myrugin ◽  
Vladislav Viktorovich Kukartsev ◽  
...  

This paper describes the technological process of manufacturing bimetallic billets, which are capable of operating at high pressures, high temperatures, and in corrosive environments, from VT-14 titanium alloy and 12KH18N10T stainless steel. To obtain a joint with a strength of at least 350 MPa, the diffusion welding method was used, which makes it possible to obtain equal-strength joints using dissimilar materials. The connection of VT-14 titanium alloy with 12KH18N10T stainless steel after obtaining bimetallic billets with the desired properties was investigated. We studied the welded VT-14 and 12KH18N10T joint obtained by diffusion welding through intermediate spacers of niobium Nb (NbStrip-1) and copper Cu (M1). On the basis of our investigations, the optimum welding modes are as follows: welding temperature: 1137 K; welding pressure: 18 MPa; welding time: 1200 s. Mechanical tests, tightness tests, and metallographic, factographic, and micro-X-ray structural studies were carried out, the results of which indicate the effectiveness of the proposed approach.


2012 ◽  
Vol 459 ◽  
pp. 315-319 ◽  
Author(s):  
Ke Dian Wang ◽  
Wen Qiang Duan ◽  
Xue Song Mei ◽  
Wen Jun Wang

The experiments of micro-hole ablation are conducted firstly on titanium alloy Ti-6Al-4V with Nd: YAG millisecond laser. A significant factor which affects the depth of blind hole is found: the depth of recast material. This paper closely examines the regularity of recast depth varying with laser parameters, discovering that the ratio of recast depth to the entire hole depth decreases as pulse width decreases, and increases as peak power decreases. Verification experiment is conducted on stainless steel 1Cr13, eventually micro-hole with very thin recast layer is drilled when the maximum peak power and the minimum pulse width of the present millisecond laser are used.


Author(s):  
Xuejiao Shao ◽  
Juan Du ◽  
Liping Zhang ◽  
Hai Xie ◽  
Jun Tian ◽  
...  

Abstract In the code for nuclear equipment, the elasto-plastic correction factor KE is a correction factor when the stress range exceeds the yield limit for simplified elasto-plastic fatigue analysis. The parameters and expressions of KE for commonly used materials (such as austenitic stainless steel) are given in the RCC-M and ASME code, but the parameters of KE for titanium alloy materials is lacking. Based on the cyclic elasto-plastic constitutive model of Z2CND18.12 (nitrogen control) and KE parameters of austenitic stainless steel given in the code, considering various sensitive factors, a numerical calculation method for determining KE correlation coefficient is established. The elasto-plastic constitutive model of TA16 alloy with nonlinear kinematic hardening was established by the uniaxial tension, strain and stress cycling tests of TA16 titanium alloy. Based on the numerical calculation method of KE and the constitutive model of TA16 titanium alloy, the expression and correlation coefficient of KE for TA16 titanium alloy were determined.


Author(s):  
Yan Zhang ◽  
YuanBo Bi ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract As two important industrial manufacturing materials, titanium alloys and stainless steel have their own advantages and disadvantages in terms of physical, chemical, and mechanical properties. The field of materials manufacturing has witnessed efforts to develop technical processes that can properly combine these two alloy types, aiming to effectively use their respective advantages. The welding technology for Ti alloy and stainless steel, as a research topic with broad prospects, is comprehensively and deeply analyzed in this review. The current research progress in this field was analyzed from different process perspectives such as fusion welding, brazing, diffusion welding, friction welding, explosive welding and vacuum hot-rolling welding. The results of the review showed that the greatest challenges of fusion welding are low ductility of the material, high residual stress, high cooling rate, and the formation of numerous brittle Ti-Fe intermetallics. By using appropriate intermediate materials between these two materials, the residual stress and brittle intermetallics near the interface of the transition joint can be minimised by solving the thermal expansion mismatch, reducing the bonding temperature and pressure, and suppressing the diffusion of elements such as Ti and Fe.


2013 ◽  
Vol 465-466 ◽  
pp. 1060-1064 ◽  
Author(s):  
Zazuli Mohid ◽  
M.A. Liman ◽  
M.R.A. Rahman ◽  
N.H. Rafai ◽  
Erween Abdul Rahim

Welding parameters are directly influenced by the work material properties. Thermal properties such as thermal conductivity and melting point are very important to estimate the range of power required and the allowable scanning speed. However, when two or more different materials are involved, modifying lasing parameters are not enough to counter the problems such as imbalance melting region and weak adhesion of contact surface. To counter this problem, the characteristics of welding beads formation for both materials need to be clarified. In this study, comparison of welding beads constructed using the same scanning parameters were done to understand the different and similarity of melted region for the both materials. Actual welding of the both materials were done under different offset distance to obtain a balanced melting area and well mixed melting region.


Author(s):  
Sibel Akyol ◽  
Hakan Bozkus ◽  
Suzan Adin Cinar ◽  
Mehmet Murat Hanci

Sign in / Sign up

Export Citation Format

Share Document