Thermal Stability of the Structure and Mechanical Properties of Submicrocrystalline Al–0.5% Mg–Sc Aluminum Alloys

2021 ◽  
Vol 2021 (1) ◽  
pp. 7-24
Author(s):  
V. N. Chuvil’deev ◽  
Ya. S. Shadrina ◽  
A. V. Nokhrin ◽  
V. I. Kopylov ◽  
A. A. Bobrov ◽  
...  
2016 ◽  
Vol 877 ◽  
pp. 211-217 ◽  
Author(s):  
Xiao Lan Wu ◽  
Zuo Ren Nie ◽  
Sheng Ping Wen ◽  
Kun Yuan Gao ◽  
Hui Huang

Erbium is an effective micro-alloying element in aluminum alloys and has been investigated intensively. Similar with the addition of Sc in aluminum alloys, nanosized L12-ordered Al3Er precipitates were formed coherently with the matrix in Er-containing micro-alloying aluminum alloys. Further, in the case of the addition of both Er and Zr, core-shell-structured Al3(ZrxEr1−x) precipitates, instead of Al3Er, were observed in a fine dispersion. Those thermally-stable precipitates can refine the grain size, minimize the segregation, homogenize the microstructure, enhance the strength, hinder the recrystallization, and thus improve the comprehensive performance of the aluminum alloys. This paper presents the effect of Er on the microstructure, mechanical properties and thermal stability of aluminum alloys. The research of some typical commercial aluminum alloys containing Er, is also reviewed here.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


Sign in / Sign up

Export Citation Format

Share Document