Meteor Hazard for Interplanetary Flights in the Ecliptic Plane

2020 ◽  
Vol 54 (7) ◽  
pp. 587-594
Author(s):  
A. V. Bagrov ◽  
V. A. Leonov ◽  
N. A. Sorokin
Keyword(s):  
Author(s):  
Jianwei Mei ◽  
Yan-Zheng Bai ◽  
Jiahui Bao ◽  
Enrico Barausse ◽  
Lin Cai ◽  
...  

Abstract TianQin is a planned space-based gravitational wave (GW) observatory consisting of three Earth-orbiting satellites with an orbital radius of about $10^5 \, {\rm km}$. The satellites will form an equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4} \, {\rm Hz}$ and $1 \, {\rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe and exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new-generation $17 \, {\rm cm}$ single-body hollow corner-cube retro-reflector which was launched with the QueQiao satellite on 21 May 2018; a new laser-ranging station equipped with a $1.2 \, {\rm m}$ telescope has been constructed and the station has successfully ranged to all five retro-reflectors on the Moon; and the TianQin-1 experimental satellite was launched on 20 December 2019—the first-round result shows that the satellite has exceeded all of its mission requirements.


2018 ◽  
Vol 618 ◽  
pp. A26 ◽  
Author(s):  
A. Czechowski ◽  
M. Hilchenbach ◽  
K. C. Hsieh ◽  
M. Bzowski ◽  
S. Grzedzielski ◽  
...  

Context. From the year 1996 until now, High energy Suprathermal Time Of Flight sensor (HSTOF) on board Solar and Heliospheric Observatory (SOHO) has been measuring the heliospheric energetic neutral atoms (ENA) flux between ±17° from the ecliptic plane. At present it is the only ENA instrument with the energy range within that of Voyager LECP energetic ion measurements. The energetic ion density and thickness of the inner heliosheath along the Voyager 1 trajectory are now known, and the ENA flux in the HSTOF energy range coming from the Voyager 1 direction may be estimated. Aims. We use HSTOF ENA data and Voyager 1 energetic ion spectrum to compare the regions of the heliosheath observed by HSTOF and Voyager 1. Methods. We compared the HSTOF ENA flux data from the forward and flank sectors of the heliosphere observed in various time periods between the years 1996 and 2010 and calculated the predicted ENA flux from the Voyager 1 direction using the Voyager 1 LECP energetic ion spectrum and including the contributions of charge exchange with both neutral H and He atoms. Results. The ratio between the HSTOF ENA flux from the ecliptic longitude sector 210−300° (the LISM apex sector) for the period 1996−1997 to the estimated ENA flux from the Voyager 1 direction is ∼1.3, but decreases to ∼0.6 for the period 1996−2005 and ∼0.3 for 1998−2006. For the flank longitude sectors (120−210° and 300−30°), the ratio also tends to decrease with time from ∼0.6 for 1996−2005 to ∼0.2 for 2008−2010. We discuss implications of these results for the energetic ion distribution in the heliosheath and the structure of the heliosphere.


2018 ◽  
Vol 617 ◽  
pp. A43 ◽  
Author(s):  
A. Czechowski ◽  
I. Mann

Context. Because of high charge-to-mass ratio, the nanodust dynamics near the Sun is determined by interplay between the gravity and the electromagnetic forces. Depending on the point where it was created, a nanodust particle can either be trapped in a non-Keplerian orbit, or escape away from the Sun, reaching large velocity. The main source of nanodust is collisional fragmentation of larger dust grains, moving in approximately circular orbits inside the circumsolar dust cloud. Nanodust can also be released from cometary bodies, with highly elongated orbits. Aims. We use numerical simulations and theoretical models to study the dynamics of nanodust particles released from the parent bodies moving in elongated orbits around the Sun. We attempt to find out whether these particles can contribute to the trapped nanodust population. Methods. We use two methods: the motion of nanodust is described either by numerical solutions of full equations of motion, or by a two-dimensional (heliocentric distance vs. radial velocity) model based on the guiding-center approximation. Three models of the solar wind are employed, with different velocity profiles. Poynting–Robertson and the ion drag are included. Results. We find that the nanodust emitted from highly eccentric orbits with large aphelium distance, like those of sungrazing comets, is unlikely to be trapped. Some nanodust particles emitted from the inbound branch of such orbits can approach the Sun to within much shorter distances than the perihelium of the parent body. Unless destroyed by sublimation or other processes, these particles ultimately escape away from the Sun. Nanodust from highly eccentric orbits can be trapped if the orbits are contained within the boundary of the trapping region (for orbits close to ecliptic plane, within ~0.16 AU from the Sun). Particles that avoid trapping escape to large distances, gaining velocities comparable to that of the solar wind.


2003 ◽  
Vol 21 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
H. A. Elliott ◽  
D. J. McComas ◽  
P. Riley

Abstract. Comparison of solar wind observations from the ACE spacecraft, in the ecliptic plane at ~ 1 AU, and the Ulysses spacecraft as it orbits over the Sun’s poles, provides valuable information about the latitudinal extent and variation of solar wind structures in the heliosphere. While qualitative comparisons can be made using average properties observed at these two locations, the comparison of specific, individual structures requires a procedure to determine if a given structure has been observed by both spacecraft. We use a 1-D hydrodynamic code to propagate ACE plasma measurements out to the distance of Ulysses and adjust for the differing longitudes of the ACE and Ulysses spacecraft. In addition to comparing the plasma parameters and their characteristic profiles, we examine suprathermal electron measurements and magnetic field polarity to help determine if the same features are encountered at both ACE and Ulysses. The He I l 1083 nm coronal hole maps are examined to understand the global structure of the Sun during the time of our heliospheric measurements. We find that the same features are frequently observed when both spacecraft are near the ecliptic plane. Stream structures derived from smaller coronal holes during the rising phase of solar cycle 23 persists over 20°–30° in heliolatitude, consistent with their spatial scales back at the Sun.Key words. Interplanetary physics (solar wind plasma)


2020 ◽  
Author(s):  
Mark Zilberman

The hypothetical “Dimming Effect” describes the change of the number of photons arriving from a moving light source per unit of time. In non-relativistic systems, the “Dimming effect” may occur due to the growing distance of light sources moving away from the receiver. This means that due to the growing distance, the photons continuously require more time to reach the receiver, which reduces the number of received photons per time unit compared to the number of emitted photons. Understandably, the proposed “Dimming effect” must be tested (confirmed or rejected) through observations. a. This article provides the formula for the calculation of “Dimming effect” values using the redshift parameter Z widely used in astronomy. b. The “Dimming effect” can possibly be detected utilizing the orbital movement of the Earth around the Sun. In accordance to the “Dimming effect”, observers on Earth will view 1.0001 more photons per time unit emitted by stars located near the ecliptic plane in the direction of the Earth orbiting the Sun. And, in contrast, observers will view only 0.9999 photons per time unit emitted by stars located near the ecliptic plane in the direction opposite to the Earth orbiting the Sun. Calculating precise measurements of the same stars within a 6-month period can possibly detect this difference. These changes in brightness are not only for specific stars, as the change in brightness takes place for all stars near the ecliptic in the direction of the Earth’s orbit around the Sun and in the opposite direction. c. The “Dimming effect” can possibly be detected in a physics laboratory using a moving light source (or mirror) and photon counters located in the direction of travel and in the opposite direction. d. In theory, Dilation of time can also be used for testing the existence of the “Dimming effect.” However, in experiments on Earth this effect appears in only the 14th digit after the decimal point and testing does not appear to be feasible. e. Why is it important to test the “Dimming effect?” If confirmed, it would allow astronomers to adjust values of "Standard Candles" used in astronomy. Since “Standard Candles” are critical in various cosmological models, the “Dimming effect” can correct models and/or reveal and support new models. If it is proved that the “Dimming effect” does not exist, it will mean that the number of photons arriving per unit of time does not depend on the speed of the light source and observer, which is not so apparent.


1991 ◽  
Vol 126 ◽  
pp. 147-150
Author(s):  
S. S. Hong ◽  
S. M. Kwon

AbstractUsing 3-dim density models of the zodiacal cloud, we have calculated brightness of the zodiacal light over an extended region around the anti-solar point. The isophotal contours of the model Gegenscheins differ from each other, morphologically, to the degree that they can differentiate the competing density models. The recently reduced Gegenschein observations of 2° resolution clearly favour the ellipsoid-type models to the fan-types, and also suggest that the surface of the densest dust concentration in the outer part of the cloud has its ascending node at longitude 100 ± 20° and is inclined 2 ± 0°.5 with respect to the ecliptic plane.


Sign in / Sign up

Export Citation Format

Share Document