The Space and Time Variations of Water Quality and Water Pollution Dynamics in the Oka Basin

2019 ◽  
Vol 46 (S1) ◽  
pp. S74-S84 ◽  
Author(s):  
R. G. Dzhamalov ◽  
K. G. Vlasov ◽  
K. G. Myagkova ◽  
O. S. Reshetnyak ◽  
T. I. Safronova
Author(s):  
Keizo Negi ◽  
Keizo Negi ◽  
Takuya Ishikawa ◽  
Takuya Ishikawa ◽  
Kenichiro Iba ◽  
...  

Japan experienced serious water pollution during the period of high economic growth in 1960s. It was also the period that we had such damages to human health, fishery and living conditions due to red tide as much of chemicals, organic materials and the like flowing into the seas along the growing population and industries in the coastal areas. Notable in those days was the issues of environment conservation in the enclosed coastal seas where pollutants were prone to accumulate inside due to low level of water circulation, resulting in the issues including red tide and oxygen-deficient water mass. In responding to these issues, we implemented countermeasures like effluent control with the Water Pollution Control Law and improvement/expansion of sewage facilities. In the extensive enclosed coastal seas of Tokyo Bay, Ise Bay and the Seto Inland Sea, the three areas of high concentration of population, we implemented water quality total reduction in seven terms from 1979, reducing the total quantities of pollutant load of COD, TN and TP. Sea water quality hence has been on an improvement trend as a whole along the steady reduction of pollutants from the land. We however recognize that there are differences in improvement by sea area such as red tide and oxygen-deficient water mass continue to occur in some areas. Meanwhile, it has been pointed out that bio-diversity and bio-productivity should be secured through conservation/creation of tidal flats and seaweed beds in the view point of “Bountiful Sea” To work at these challenges, through the studies depending on the circumstances of the water environment in the enclosed coastal seas, we composed “The Policy of Desirable State of 8th TPLCS” in 2015. We have also added the sediment DO into the water quality standard related to the life-environmental items in view of the preservation of aquatic creatures in the enclosed water areas. Important from now on, along the Policy, is to proceed with necessary measures to improve water quality with good considerations of differences by area in the view point of “Beautiful and bountiful Sea”.


2020 ◽  
Vol 296 ◽  
pp. 106925
Author(s):  
Andrew J.H. Davey ◽  
Letitia Bailey ◽  
Victoria Bewes ◽  
Arthur Mubaiwa ◽  
Juliette Hall ◽  
...  

2021 ◽  
Author(s):  
Stefan Krause ◽  

<p>It is probably hard to overestimate the significance of the River Ganges for its spiritual, cultural and religious importance. As the worlds’ most populated river basin and a major water resource for the 400 million people inhabiting its catchment, the Ganges represents one of the most complex and stressed river systems globally. This makes the understanding and management of its water quality an act of humanitarian and geopolitical relevance. Water quality along the Ganges is critically impacted by multiple stressors, including agricultural, industrial and domestic pollution inputs, a lack and failure of water and sanitation infrastructure, increasing water demands in areas of intense population growth and migration, as well as the severe implications of land use and climate change. Some aspects of water pollution are readily visualised as the river network evolves, whilst others contribute to an invisible water crisis (Worldbank, 2019) that affects the life and health of hundreds of millions of people.</p><p>We report the findings of a large collaborative study to monitor the evolution of water pollution along the 2500 km length of the Ganges river and its major tributaries that was carried out over a six-week period in Nov/Dec 2019 by three teams of more than 30 international researchers from 10 institutions. Surface water and sediment were sampled from more than 80 locations along the river and analysed for organic contaminants, nutrients, metals, pathogen indicators, microbial activity and diversity as well as microplastics, integrating in-situ fluorescence and UV absorbance optical sensor technologies with laboratory sample preparation and analyses. Water and sediment samples were analysed to identify the co-existence of pollution hotspots, quantify their spatial footprint and identify potential source areas, dilution, connectivity and thus, derive understanding of the interactions between proximal and distal of sources solute and particulate pollutants.</p><p>Our results reveal the co-existence of distinct pollution hotspots for several contaminants that can be linked to population density and land use in the proximity of sampling sites as well as the contributing catchment area. While some pollution hotspots were characterised by increased concentrations of most contaminant groups, several hotspots of specific pollutants (e.g., microplastics) were identified that could be linked to specific cultural and religious activities. Interestingly, the downstream footprint of specific pollution hotspots from contamination sources along the main stem of the Ganges or through major tributaries varied between contaminants, with generally no significant downstream accumulation emerging in water pollution levels, bearing significant implications for the spatial reach and legacy of pollution hotspots. Furthermore, the comparison of the downstream evolution of multi-pollution profiles between surface water and sediment samples support interpretations of the role of in-stream fate and transport processes in comparison to patterns of pollution source zone activations across the channel. In reporting the development of this multi-dimensional pollution dataset, we intend to stimulate a discussion on the usefulness of large river network surveys to better understand the relative contributions, footprints and impacts of variable pollution sources and how this information can be used for integrated approaches in water resources and pollution management.</p>


2009 ◽  
Vol 90 (2) ◽  
pp. 1168-1177 ◽  
Author(s):  
Jinzhu Ma ◽  
Zhenyu Ding ◽  
Guoxiao Wei ◽  
Hua Zhao ◽  
Tianming Huang

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1394 ◽  
Author(s):  
Marsha Putri ◽  
Chao-Hsun Lou ◽  
Mat Syai’in ◽  
Shang-Hsin Ou ◽  
Yu-Chun Wang

The application of multivariate statistical techniques including cluster analysis and principal component analysis-multiple linear regression (PCA-MLR) was successfully used to classify the river pollution level in Taiwan and identify possible pollution sources. Water quality and heavy metal monitoring data from the Taiwan Environmental Protection Administration (EPA) was evaluated for 14 major rivers in four regions of Taiwan with the Erren River classified as the most polluted river in the country. Biochemical oxygen demand (6.1 ± 2.38), ammonia (3.48 ± 3.23), and total phosphate (0.65 ± 0.38) mg/L concentration in this river was the highest of the 14 rivers evaluated. In addition, heavy metal levels in the following rivers exceeded the Taiwan EPA standard limit (lead: 0.01, copper: 0.03, and manganese: 0.03) mg/L concentration: lead-in the Dongshan (0.02 ± 0.09), Jhuoshuei (0.03 ± 0.03), and Xinhuwei Rivers (0.02 ± 0.02) mg/L; copper: in the Dahan (0.036 ± 0.097), Laojie (0.06 ± 1.77), and Erren Rivers are (0.05 ± 0.158) mg/L; manganese: in all rivers. A total 72% of the water pollution in the Erren River was estimated to originate from industrial sources, 16% from domestic black water, and 12% from natural sources and runoff from other tributaries. Our research demonstrated that applying PCA-MLR and cluster analysis on long-term monitoring water quality would provide integrated information for river water pollution management and future policy making.


2017 ◽  
Vol 8 (3) ◽  
pp. 173
Author(s):  
Siti Nurul Aida ◽  
Agus Djoko Utomo

Perairan Rawa Peningmerupakan tipe perairan yang tergenang dan mempunyai arti penting bagi perikanan. Masalah utama yang ada di Rawa Pening yaitu pendangkalan karena sedimentasi dan eutrofikasi yang disebabkan pencemaran air berasal dari limbah rumah tangga, pertanian dan budidaya perikanan. Penelitian ini bertujuan untukmengetahui tingkat kesuburan perairan dan kualitas air di Rawa Pening. Penelitian dilakukan pada bulan Mei, Juni, Agustus dan Oktober 2013. Frekuensi pengambilan contoh dilakukan empat kali yaitu pada bulan Mei, Juni,Agustus dan Oktober. Stasiun pengamatan meliputi:A. Tengah (Puteran); B.Muara sungai (Torong); C.Area KJA; D. Pemotongan eceng Gondok (tengah 1); E. Sungai keluar (Tuntang); F. Muara sungai (Muncul); G. Tidak ada pemotongan eceng gondok (tengah 2). Data tingkat kesuburan perairan dianalisis dengan metode Carlon’s.Hasil penelitianmenunjukkan bahwa Rawa Pening termasuk katagori perairan dengan tingkat kesuburan tinggi, nilai Thropic State Index (TSI) pada semua stasiun pengamatan berkisar antara 57,22 - 68,06. Kondisi kualitas air yang kurang baik tersebut akanmerugikan perikanan, seperti kejadian kematian ikanmasal, lambatnya pertumbuhan ikan dan penurunan daya dukung perairan.The Rawa Pening waters is a lentic water and has significance for fishery. The main problems in Rawa Pening are silting due to sedimentation and eutrophication due to water pollution from household waste, agriculture and fisheries. The study aims to examine trophic level and water quality. The research conducted on May, June, August and October 2013. There was 7 stations i.e. A. middle (Puteran); B. inlet of Torong; C. Location of aquaculture;D. locations where harvesting of water hyacinth occurred (middle1); E. outlet (Tuntang); F. inlet (Muncul); G. location where no harvest of water hyacinth (middle 2). Trophic level were analyzed by Carlon’s method. The results showed that Rawa Pening waters categorized as the high eutrophication level where the Trophic State Index (TSI) was 57. 22 to 68. 06. The low water quality will be detrimentaled to fisheries, such as mass fish death, slow fish growth and also a decline of carrying capacity of ecosystem.


2021 ◽  
Vol 261 ◽  
pp. 03019
Author(s):  
Huang Pengfei ◽  
Liu Pei ◽  
Xu Wei

In this paper, we analyzed the current situation of water pollution sources near Macao airport, established a two-dimensional water exchange and water quality mathematical model near the project, and compared and simulated the reclamation schemes of Macao airport. According to the results of water exchange and COD calculation of water quality, the 80 m channel scheme was remarkably better than the 40 m one in terms of water exchange capacity and the possibility of achieving the water quality target. However, with the increase of channel width, the variation of water exchange rate and half exchange period would slow down. There was no significant difference in water exchange rate, water exchange period and water quality distribution between 80m channel and 120 m channel. The final scheme was to adopt the 80 m channel.


2006 ◽  
Vol 86 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Dejan Filipovic ◽  
Danijela Obradovic ◽  
Velimir Secerov

The characteristics of existing environmental conditions are basis for any kind of further environmental investigation in certain area. Special attention must be dedicated to the problem of water pollution and their protection, in view of water as one of the most valuable recourse in this area. This paper analyses existing water conditions in the Municipality of Kladovo and proposes mitigation measures.


Sign in / Sign up

Export Citation Format

Share Document