Electrophysiological brain activity during the control of a motor imagery-based brain–computer interface

2017 ◽  
Vol 43 (5) ◽  
pp. 501-511 ◽  
Author(s):  
A. A. Frolov ◽  
G. A. Aziatskaya ◽  
P. D. Bobrov ◽  
R. Kh. Luykmanov ◽  
I. R. Fedotova ◽  
...  
2019 ◽  
Author(s):  
Jennifer Stiso ◽  
Marie-Constance Corsi ◽  
Javier Omar Garcia ◽  
Jean M Vettel ◽  
Fabrizio De Vico Fallani ◽  
...  

Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method -- non-negative matrix factorization -- to simultaneously identify regularized, covarying subgraphs of functional connectivity and behavior, and to detect the time-varying expression of each subgraph. We find that learning is marked by distributed brain-behavior relations: swifter learners displayed many subgraphs whose temporal expression tracked performance. Learners also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in networks important for sustaining attention. After formalizing the model in the framework of network control theory, we test the model and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of brain regions important for attention. The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.


2013 ◽  
Vol 25 (10) ◽  
pp. 2709-2733 ◽  
Author(s):  
Xinyang Li ◽  
Haihong Zhang ◽  
Cuntai Guan ◽  
Sim Heng Ong ◽  
Kai Keng Ang ◽  
...  

Effective learning and recovery of relevant source brain activity patterns is a major challenge to brain-computer interface using scalp EEG. Various spatial filtering solutions have been developed. Most current methods estimate an instantaneous demixing with the assumption of uncorrelatedness of the source signals. However, recent evidence in neuroscience suggests that multiple brain regions cooperate, especially during motor imagery, a major modality of brain activity for brain-computer interface. In this sense, methods that assume uncorrelatedness of the sources become inaccurate. Therefore, we are promoting a new methodology that considers both volume conduction effect and signal propagation between multiple brain regions. Specifically, we propose a novel discriminative algorithm for joint learning of propagation and spatial pattern with an iterative optimization solution. To validate the new methodology, we conduct experiments involving 16 healthy subjects and perform numerical analysis of the proposed algorithm for EEG classification in motor imagery brain-computer interface. Results from extensive analysis validate the effectiveness of the new methodology with high statistical significance.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Chu Kiong Loo ◽  
Andrews Samraj ◽  
Gin Chong Lee

A brain computer interface BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction, and classification operations. Feature extraction is crucial, as it has a substantial effect on the classification accuracy and speed. While fractal dimension has been successfully used in various domains to characterize data exhibiting fractal properties, its usage in motor imagery-based BCI has been more recent. In this study, commonly used fractal dimension estimation methods to characterize time series Katz's method, Higuchi's method, rescaled range method, and Renyi's entropy were evaluated for feature extraction in motor imagery-based BCI by conducting offline analyses of a two class motor imagery dataset. Different classifiers fuzzy k-nearest neighbours FKNN, support vector machine, and linear discriminant analysis were tested in combination with these methods to determine the methodology with the best performance. This methodology was then modified by implementing the time-dependent fractal dimension TDFD, differential fractal dimension, and differential signals methods to determine if the results could be further improved. Katz's method with FKNN resulted in the highest classification accuracy of 85%, and further improvements by 3% were achieved by implementing the TDFD method.


2021 ◽  
Vol 11 (24) ◽  
pp. 11876
Author(s):  
Catalin Dumitrescu ◽  
Ilona-Madalina Costea ◽  
Augustin Semenescu

In recent years, the control of devices “by the power of the mind” has become a very controversial topic but has also been very well researched in the field of state-of-the-art gadgets, such as smartphones, laptops, tablets and even smart TVs, and also in medicine, to be used by people with disabilities for whom these technologies may be the only way to communicate with the outside world. It is well known that BCI control is a skill and can be improved through practice and training. This paper aims to improve and diversify signal processing methods for the implementation of a brain-computer interface (BCI) based on neurological phenomena recorded during motor tasks using motor imagery (MI). The aim of the research is to extract, select and classify the characteristics of electroencephalogram (EEG) signals, which are based on sensorimotor rhythms, for the implementation of BCI systems. This article investigates systems based on brain-computer interfaces, especially those that use the electroencephalogram as a method of acquisition of MI tasks. The purpose of this article is to allow users to manipulate quadcopter virtual structures (external, robotic objects) simply through brain activity, correlated with certain mental tasks using undecimal transformation (UWT) to reduce noise, Independent Component Analysis (ICA) together with determination coefficient (r2) and, for classification, a hybrid neural network consisting of Radial Basis Functions (RBF) and a multilayer perceptron–recurrent network (MLP–RNN), obtaining a classification accuracy of 95.5%. Following the tests performed, it can be stated that the use of biopotentials in human–computer interfaces is a viable method for applications in the field of BCI. The results presented show that BCI training can produce a rapid change in behavioral performance and cognitive properties. If more than one training session is used, the results may be beneficial for increasing poor cognitive performance. To achieve this goal, three steps were taken: understanding the functioning of BCI systems and the neurological phenomena involved; acquiring EEG signals based on sensorimotor rhythms recorded during MI tasks; applying and optimizing extraction methods, selecting and classifying characteristics using neuronal networks.


Sign in / Sign up

Export Citation Format

Share Document