scholarly journals Evaluation of Methods for Estimating Fractal Dimension in Motor Imagery-Based Brain Computer Interface

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Chu Kiong Loo ◽  
Andrews Samraj ◽  
Gin Chong Lee

A brain computer interface BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction, and classification operations. Feature extraction is crucial, as it has a substantial effect on the classification accuracy and speed. While fractal dimension has been successfully used in various domains to characterize data exhibiting fractal properties, its usage in motor imagery-based BCI has been more recent. In this study, commonly used fractal dimension estimation methods to characterize time series Katz's method, Higuchi's method, rescaled range method, and Renyi's entropy were evaluated for feature extraction in motor imagery-based BCI by conducting offline analyses of a two class motor imagery dataset. Different classifiers fuzzy k-nearest neighbours FKNN, support vector machine, and linear discriminant analysis were tested in combination with these methods to determine the methodology with the best performance. This methodology was then modified by implementing the time-dependent fractal dimension TDFD, differential fractal dimension, and differential signals methods to determine if the results could be further improved. Katz's method with FKNN resulted in the highest classification accuracy of 85%, and further improvements by 3% were achieved by implementing the TDFD method.

Author(s):  
Ling Zou ◽  
Xinguang Wang ◽  
Guodong Shi ◽  
Zhenghua Ma

Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the sixth level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.


Brain-computer interface (BCI) has emerged as a popular research domain in recent years. The use of electroencephalography (EEG) signals for motor imagery (MI) based BCI has gained widespread attention. The first step in its implementation is to fetch EEG signals from scalp of human subject. The preprocessing of EEG signals is done before applying feature extraction, selection and classification techniques as main steps of signal processing. In preprocessing stage, artifacts are removed from raw brain signals before these are input to next stage of feature extraction. Subsequently classifier algorithms are used to classify selected features into intended MI tasks. The major challenge in a BCI systems is to improve classification accuracy of a BCI system. In this paper, an approach based on Support Vector Machine (SVM), is proposed for signal classification to improve accuracy of the BCI system. The parameters of kernel are varied to attain improvement in classification accuracy. Independent component analysis (ICA) technique is used for preprocessing and filter bank common spatial pattern (FBCSP) for feature extraction and selection. The proposed approach is evaluated on data set 2a of BCI Competition IV by using 5-fold crossvalidation procedure. Results show that it performs better in terms of classification accuracy, as compared to other methods reported in literature.


Author(s):  
Ling Zou ◽  
Xinguang Wang ◽  
Guodong Shi ◽  
Zhenghua Ma

Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the sixth level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.


Author(s):  
Nitesh Singh Malan ◽  
Shiru Sharma

In this chapter, motor imagery (MI) based brain-computer interface (BCI) is introduced incorporating the explanation of key components required to design a practical BCI device. Its application to the medical and nonmedical sector is discussed in detail. In the experimental study, a feature extraction method using time, frequency, and phase analysis of Motor imagery EEG is presented. For the classification of MI task, EEG signals are decomposed using a dual-tree complex wavelet transform (DTCWT) and then time, frequency, and phase features are extracted. The validation of the proposed method is conducted using BCI competition IV dataset 2b. A Support vector machine (SVM) classifier is used to perform the classification task. Performance of the proposed method is compared with the standard feature extraction methods. The proposed scheme achieved a larger average classification accuracy of 82.81% which is better than that obtained by other methods.


2021 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Umme Farhana ◽  
Mst Jannatul Ferdous

In brain computer interface (BCI) systems, the electroencephalography (EEG) signals give a pathway to a motor disabled person to communicate outside using the brain signal and a computer. EEG signals of different motor imagery (MI) movements can be differentiated using an effective classification technique to aid a motor disabled patient. The purpose of this paper is to classify two different types of MI movement tasks, movement of the left hand and movement of the right foot EEG signals accurately. For this purpose we have used a publicly available dataset. Since the feature extraction for classification is an important task, so we have used popular common spatial pattern (CSP) method for spatial feature extraction. Two different machine learning classifiers named support vector machine (SVM) and K-nearest neighbor (KNN) have been used to verify the proposed method. We got the highest average results 95.55%, 98.73% and 92.38% in case of SVM and 93.5%, 98.73% and 90.15% in case of KNN for classification accuracy, sensitivity, and specificity, respectively when a Butterworth band-pass filter passed through [10–30] Hz. On the other hand accuracy came to 89.4% in [10-30] Hz when applying CSP for feature extraction and fisher linear discriminant analysis (FLDA) for classification on this dataset earlier. Journal of Engineering Science 12(2), 2021, 67-77


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12027
Author(s):  
Shan Guan ◽  
Jixian Li ◽  
Fuwang Wang ◽  
Zhen Yuan ◽  
Xiaogang Kang ◽  
...  

The classification of electroencephalography (EEG) induced by the same joint is one of the major challenges for brain-computer interface (BCI) systems. In this paper, we propose a new framework, which includes two parts, feature extraction and classification. Based on local mean decomposition (LMD), cloud model, and common spatial pattern (CSP), a feature extraction method called LMD-CSP is proposed to extract distinguishable features. In order to improve the classification results multi-objective grey wolf optimization twin support vector machine (MOGWO-TWSVM) is applied to discriminate the extracted features. We evaluated the performance of the proposed framework on our laboratory data sets with three motor imagery (MI) tasks of the same joint (shoulder abduction, extension, and flexion), and the average classification accuracy was 91.27%. Further comparison with several widely used methods showed that the proposed method had better performance in feature extraction and pattern classification. Overall, this study can be used for developing high-performance BCI systems, enabling individuals to control external devices intuitively and naturally.


2019 ◽  
Author(s):  
Jennifer Stiso ◽  
Marie-Constance Corsi ◽  
Javier Omar Garcia ◽  
Jean M Vettel ◽  
Fabrizio De Vico Fallani ◽  
...  

Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method -- non-negative matrix factorization -- to simultaneously identify regularized, covarying subgraphs of functional connectivity and behavior, and to detect the time-varying expression of each subgraph. We find that learning is marked by distributed brain-behavior relations: swifter learners displayed many subgraphs whose temporal expression tracked performance. Learners also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in networks important for sustaining attention. After formalizing the model in the framework of network control theory, we test the model and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of brain regions important for attention. The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.


2021 ◽  
Vol 11 (12) ◽  
pp. 2918-2927
Author(s):  
A. Shankar ◽  
S. Muttan ◽  
D. Vaithiyanathan

Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain, and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.


Sign in / Sign up

Export Citation Format

Share Document