Alkenylphenol-based pyridinium salts as hydrogen sulfide corrosion inhibitors and agents for inhibiting the growth of sulfate-reducing bacteria in oil production

2015 ◽  
Vol 55 (3) ◽  
pp. 247-251
Author(s):  
G. M. Mekhtieva ◽  
A. M. Magerramov ◽  
M. R. Bairamov ◽  
M. A. Agaeva ◽  
Sh. B. Khoseinzade ◽  
...  
2013 ◽  
Vol 53 (6) ◽  
pp. 423-425 ◽  
Author(s):  
A. M. Magerramov ◽  
M. R. Bairamov ◽  
Sh. B. Khoseinzade ◽  
M. A. Agaeva ◽  
G. M. Mekhtieva ◽  
...  

The Analyst ◽  
2015 ◽  
Vol 140 (6) ◽  
pp. 1772-1786 ◽  
Author(s):  
Zhi Guo ◽  
Guiqiu Chen ◽  
Guangming Zeng ◽  
Zhongwu Li ◽  
Anwei Chen ◽  
...  

The development of H2S fluorescence-sensing strategies and their potential applications in the determination of sulfate-reducing bacteria activity.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qigen Deng ◽  
Tao Zhang ◽  
Fajun Zhao ◽  
Hao Wang ◽  
Jingping Yin

The salinity, chemical properties, and migration characteristics of groundwater in coal measures are the key factors that affect the generation, migration, and reservoir of hydrogen sulfide (H2S) in low-rank coal seams. Taking the Jurassic coal and rock strata in the southeastern margin of the Junggar basin as the research object, according to the hydrogeological characteristics of the coal measures, the region is divided into 4 hydrogeological units. The coalbed methane contains a large number of secondary biogas. Along the direction of groundwater runoff, the salinity and the pH value increase gradually. The salinity in the hydrogeological units is low; it is not conducive to the propagation of sulfate-reducing bacteria and the formation of hydrogen sulfide of the Houxia, the south of Manasi River, and Hutubi and Liuhuangou area, the western region of the Miquan. The high salinity center and depressions of low water level (hydrodynamic stagnation zone) in the hydrogeological unit of the Liuhuanggou and the Miquan are the main areas for the production and enrichment of H2S in the low-rank coal. The high salinity in water is formed by infiltration, runoff, and drought evaporation. At the same time, the deep confined water environment closed well; in conditions of hydrocarbon-rich, under the action of sulfate-reducing bacteria, bacterial sulfate reduction will occur and hydrogen sulfide formed. According to the circulation characteristics of water bearing H2S in the region, imbricate and single bevel two kind generation and enrichment mode of hydrogen sulfide under the action of hydrodynamic control. The solubility of hydrogen sulfide in pure water and solutions of NaCl and Na2SO4 with different molar concentrations was calculated. The H2S solubility of groundwater in coal measures of 4 hydrogeological units was estimated.


1992 ◽  
Vol 40 (5) ◽  
pp. 593-600 ◽  
Author(s):  
M. A. M. Reis ◽  
J. S. Almeida ◽  
P. C. Lemos ◽  
M. J. T. Carrondo

2014 ◽  
Vol 937 ◽  
pp. 297-302
Author(s):  
Wen Feng Song ◽  
De Sheng Ma ◽  
You Yi Zhu ◽  
Xiao Fang Wei ◽  
Jie Wu

To better understand the roles of microorganisms in oil production, diversity and distribution of microbes in Jilin oilfield was studied. Firstly, chromosomal DNA wassuccessfully extracted directly from crude oil samples. Diversity and distribution of microbes was then analyzed based on 16S rDNA libraries. There were totally 21 OTUs were obtained through 16S rDNA sequencing. Of those OTUs, 13 are bacteria in whichProteobacteriais the major family, while 8 are archaea in whichMethanomicrobiais the dominant. Finally, SRB was found in all samples by amplifying theapsAgene using PCR. SRB found in Jilin oil samples belong toδ-Proteobacteria.


2021 ◽  
Vol 15 (2) ◽  
pp. 35-46
Author(s):  
O. M. Сhayka ◽  
◽  
T. B. Peretyatko ◽  
A. A. Halushka ◽  

Introduction. Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds. These bacteria oxidize different organic substrates using metals with variable valency as electron acceptors and transform them into non-toxic or less toxic forms for living organisms. However, wastewater contains high concentrations of different toxic xenobiotics, particularly, metal ions that have negative influence on living organisms. For this reason, it is important to use resistant strains of microorganisms for the purification of wastewater. The aim of this work was to identify the thermophilic sulfur-reducing bacteria, isolated from “Nadiia” pit spoil heap of Chervonohrad mining region, and to study their properties. Materials and Methods. Thermophilic sulfur-reducing bacteria were isolated from the samples of rock of “Nadiia” pit heap at 50 cm depth. Bacteria were cultivated in TF medium under the anaerobic conditions in anaerostates. Cell biomass was measured turbidimetrically using the photoelectric colorimeter KFK-3 (λ = 340 nm, 3 mm cuvette). Hydrogen sulfide content was measured photoelectrocolorymetrically by the production of methylene blue. Organic acids content was measured by high performance liquid chromatography. Cr(VI), Fe(III), Мn(IV) and NO3– content was measured turbidimetrically. Results. Thermophilic sulfur-reducing bacteria were isolated from the rock of “Nadiia” pit heap of Chervonohrad mining region. They were identified as Moorela thermoacetica based on the morpho-physiological and biochemical properties and on the results of phylogenetic analysis. M. thermoacetica Nadia-3 grow in the synthetic TF medium, have the shape of elongated rods, are gram-positive, endospore-forming. They form light brown colonies. Optimal growth was observed at 50–55 °C, pH 6.5–7. The bacteria utilize glucose, starch, fructose, maltose, lactose, sodium lactate, arabinose, cellulose, maltose, glycerol, fumarate, and ethanol as carbon sources. The highest sulfidogenic activity of M. thermoacetica Nadia-3 was found in media with glycerol, lactose, and glucose. M. thermoacetica Nadia-3 reduce SO42-, S2O32-, Fe(III), NO3–, Cr(VI) compounds besides elemental sulfur. They accumulate biomass at K2Cr2O7 concentrations of 0.1–1 mM. Sulfur reduction is not the main way of energy accumulation. Conclusions. Thermophilic chromium-resistant sulfur-reducing bacteria M. thermoacetica Nadia-3, that produce hydrogen sulfide during the oxidation of different organic compounds, were isolated from the rock of “Nadiia” pit heap. They reduce Fe(III), Cr(VI), NO3–, SO42-, S2O32-, besides elemental sulfur.


Sign in / Sign up

Export Citation Format

Share Document