DNA damage in bone marrow cells of mouse males in vivo after exposure to the pheromone: Comet assay

2017 ◽  
Vol 53 (10) ◽  
pp. 1105-1112 ◽  
Author(s):  
E. V. Daev ◽  
M. V. Petrova ◽  
L. S. Onopa ◽  
V. A. Shubina ◽  
T. S. Glinin
2014 ◽  
Vol 12 (3) ◽  
pp. 474-483 ◽  
Author(s):  
A. L. Fonseca ◽  
J. Da Silva ◽  
E. A. Nunes ◽  
S. M. F. O. Azevedo ◽  
R. M. Soares

Cylindrospermopsin (CYN) is an alkaloid commonly produced by some cyanobacteria that has been implicated in outbreaks of human illness. The aim of this study was to investigate the genotoxicity of Cylindrospermopsis raciborskii cellular content (including CYN) and its byproducts resulting from chlorination during water treatment. DNA damage in blood and liver cells was analysed by the comet assay and micronucleus test (MN). Mice were injected intraperitoneally with the following treatments: (a) physiological saline, (b) treated water, (c) treated water plus C. raciborskii extract (CYN producer strain, CYPO-011 K), (d) C. raciborskii extract (CYN producer strain, CYPO-011 K), (e) C. raciborskii extract (CYN non producer strain), and (f) treated water plus C. raciborskii extract (CYN non producer strain) extract. After 48 h, samples were taken to perform tests (blood and liver cells to the comet assay and bone marrow to MN test). The CYPO-011 K had a genotoxic and mutagenic effects on liver and bone marrow cells. The group that received chlorine-treated water plus CYPO-011 K also exhibited genotoxic effects in the liver, as well as in the blood, and a mutagenic effect in blood marrow cells. The results emphasise the need of improving CYN monitoring in waters bodies in order to reduce the risk of human exposure.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Hang Su ◽  
Mei-Jun Long ◽  
Joel E Michalek ◽  
Michael Weil ◽  
Chul S Ha

Background: Activation of p53 is one of major pathways by which DNA damaging agents (DDA) such as radiation and chemotherapy cause toxicity in normal tissues and it induces a cascade of events that eventually leads to cell senescence or cell death. We have reported that a brief pretreatment with low dose arsenic (LDA), by temporarily and reversibly downregulating p53 at the time of treatment with DDA, reduces the normal tissue toxicity without compromising tumor response to treatment. This protective effect is selective to normal tissues, as it requires functional p53. Though not every cancer cell has detectable p53 mutations, essentially every cancer cell has dysfunctional p53. Therefore most cancer cells will not be protected by this strategy. Genomic instability and inability to repair DNA damage from DDA in the hematopoietic stem cells have been attributed to the development of therapy-induced myelodysplastic syndrome (tMDS) and acute myeloid leukemia (AML). We have also been studying the effect of LDA on the genome in the setting of cancer therapy. We have reported that LDA pretreatment significantly reduces radiation-induced DNA double strand breaks (DSBs) and apoptosis in normal cells both in-vitro and in-vivo. Persistent DNA damage such as DSBs can trigger genomic instability and can be prevented by proper DNA repair. Our previous work using comet assay to quantify DNA damage after radiation has indicated that DNA repair capacity is enhanced by LDA pretreatment. A role for LDA in maintaining genomic integrity has been implicated in our in-vitro studies, where we found that LDA protected telomeres from enhanced erosion by DDA in Concanavalin A-activated normal human lymphocytes, and that LDA reduced spontaneous and radiation-induced mutations in mouse embryonic stem cells. Yet, whether this p53 downregulation-based strategy helps genome maintenance during cancer treatment using DDA has not been investigated in-vivo. CBA/Ca mice have 15-25% incidence of AML after 3 Gy of total body ionizing radiation (IR). About 95% of mice that develop radiation-induced AML (rAML) have a deletion on chromosome 2 encompassing the PU.1 gene. Since PU.1 deletion is a critical contributor to and a useful surrogate marker for leukemogenesis in the murine rAML model, we tested a hypothesis whether pretreatment with LDA before IR helps maintain genomic integrity by evaluating bone marrow cells for PU.1 gene deletion. Method: One hundred twenty mice were randomized into four groups: PBS+sham IR (control), LDA+sham IR, PBS+IR and LDA+IR. Prior to sham or 3 Gy of IR, CBA/Ca mice were injected with either PBS or LDA intraperitoneally at the dose of 0.4mg/kg for 3 days. At 7, 30 and 180 days after radiation, bone marrow cells were collected from femurs and fixed with Carnoy's Fixative. To assess the effect of LDA on PU.1 gene deletion, fluorescence in-situ hybridization (FISH) assay was performed. An ATTO550 labeled PU.1 probe was designed and used to detect deletions that occur in 2qE1 and involve the PU.1 gene locus, as well as two 6-FAM labeled probes for centromere and telomere respectively. Four to five hundred cells were analyzed for each mouse. Statistical significance was determined from a two-way analysis of variance in log units using SAS Version 9.4. Result: We successfully established the FISH assay that can specifically detect the PU.1 gene not only in metaphase cells but also in interphase cells. As shown in the figure, mice in the LDA+IR group have significantly fewer bone marrow cells exhibiting PU.1 gene deletion compared with PBS+IR group at all three time points examined (Day 7: 2±1.2% vs 3.7±2.6%, P=0.047; Day 30: 1.9±1.1% vs 3.2±1.9%, P=0.040; Day 180: 2.8±1.0% vs 5.6±3.5%, P=0.014). LDA treatment alone has a negligible effect on PU.1 loss as compared to the control group. Conclusion: Our result suggests that LDA pretreatment protects genomic integrity following IR treatment in-vivo. As the development of rAML is a multi-step process, the impact of LDA pretreatment on the actual incidence of secondary malignancy needs further validation in animal models. The genome-protective effect of LDA that we have revealed supports its potential use as a strategy to reduce the development of radiation-induced secondary malignances such as MDS and AML. Disclosures Ha: Protectum Oncology: Current Employment, Current equity holder in private company.


2014 ◽  
Vol 61 (1) ◽  
Author(s):  
Monika A Papież

There is increasing evidence for the existence of an association between the presence of etoposide phenoxyl radicals and the development of treatment-related acute myeloid leukemia (t-AML), which occurs in a few percent of patients treated with this chemotherapeutic agent. The most common side effect caused by etoposide is myelosuppression, which limits the use of this effective drug. The goal of the study was to investigate the influence of antioxidant querectin on myelosuppression and oxidative DNA damage caused by etoposide. The influence of quercetin and/or etoposide on oxidative DNA damage was investigated in LT-12 cell line and bone marrow cells of rats via comet assay. The effect of quercetin on myelosuppression induced by etoposide was invetsigated by cytological analysis of bone marrow smears stained with May-Grünwald-Giemsa stain. Etoposide caused a significant increase in oxidative DNA damage in bone marrow cells and LT-12 cell line in comparison to the appropriate controls. Quercetin significantly reduced the oxidative DNA damage caused by etoposide both in vitro and in vivo. Quercetin also significantly protected against a decrease in the percentage of myeloid precursors and erythroid nucleated cells caused by etoposide administration in comparison to the group treated with etoposide alone. The results of the study indicate that quercetin could be considered a protectively acting compound in bone marrow cells during etoposide therapy.


Author(s):  
Е.А. Анисина ◽  
А.К. Жанатаев ◽  
А.А. Лисицын ◽  
И.Р. Шиловский ◽  
О.О. Колоскова ◽  
...  

Наночастицы при однократном и многократном введении увеличивают уровень повреждений ДНК в легких, печени и почках мышей, а также в клетках костного мозга in vitro. В условиях однократного и многократного введения наночастицы не индуцируют хромосомные аберрации в клетках костного мозга мышей. A single and repeated doses of nanoparticles caused DNA damage in the liver, lung and kidney of mice as well as in the in vitro comet assay on bone marrow cells. No statistically significant increase in the percentage of cells with chromosomal aberrations was observed in mice treated with nanoparticles after a single or repeated injection.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


1984 ◽  
Vol 26 (2) ◽  
pp. 152-157
Author(s):  
S. M. Singh ◽  
D. L. Reimer

Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2′deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment – strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.Key words: sister chromatid exchange, BrdU, recombination, replication, X chromosome.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Sign in / Sign up

Export Citation Format

Share Document