Protamine 1 and 2 mRNA Abundance in Human Spermatozoa and Its Relation to Semen Quality and Sperm DNA Fragmentation among Fertility Clinic Patients

2021 ◽  
Vol 57 (2) ◽  
pp. 213-220
Author(s):  
M. A. Ishchuk ◽  
O. V. Malysheva ◽  
E. M. Komarova ◽  
I. D. Mekina ◽  
E. A. Lesik ◽  
...  
2020 ◽  
Vol 9 (5) ◽  
pp. 1341
Author(s):  
Monica Muratori ◽  
Giulia Pellegrino ◽  
Giusi Mangone ◽  
Chiara Azzari ◽  
Francesco Lotti ◽  
...  

Sperm DNA fragmentation (sDF) negatively affects reproduction and is traditionally detected in total sperm population including viable and non-viable spermatozoa. Here, we aimed at exploring the ability of DNA fragmentation to discriminate fertile and subfertile men when detected in viable (viable sDF), non-viable (non-viable sDF), and total spermatozoa (total sDF). We revealed sDF in 91 male partners of infertile couples and 71 fertile men (max 1 year from natural conception) with LiveTUNEL coupled to flow cytometry, able to reveal simultaneously DNA fragmentation and cell viability. We found that the three sDF parameters discriminated fertile and subfertile men with similar accuracy and independently from age and basal semen parameters: AUCs (area under the curves) (95% CI) were: 0.696 (0.615–0.776), p < 0.001 for total sDF; 0.718 (0.640–0.797), p < 0.001 for viable sDF; 0.760 (0.685–0.835), p < 0.001 for non-viable sDF. We also found that total and non-viable but not viable sDF significantly correlated to age and semen quality. In conclusion, the three sDF parameters similarly discriminated fertile and subfertile men. Viable spermatozoa with DNA fragmentation are likely cells able to fertilize the oocyte but failing to properly support subsequent embryo development. Non-viable sDF could be a sign of a subtler damage extended beyond the non-viable cells.


2020 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
ParvizK Kavoussi ◽  
Natasha Abdullah ◽  
MelissaS Gilkey ◽  
Caitlin Hunn ◽  
GLuke Machen ◽  
...  

Biomonitoring ◽  
2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Hueiwang Anna Jeng ◽  
Ruei-Nian Li ◽  
Wen-Yi Lin

Abstract:The present study aimed to investigate the relationship between semen quality parameters and DNA integrity, and determine whether semen quality parameters could serve as a reliable biomarker for monitoring sperm DNA damage. Conventional semen parameters from a total of 202 male human subjects were analyzed. DNA fragmentation and 8-oxo-7,8-dihydro-2′- deoxyguanosine (8-oxoGuo) were used to assess sperm DNA integrity. DNA fragmentation was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and sperm chromatin structure assay (SCSA), while 8-oxodGuo was quantified by the liquid chromatography/tandem mass spectrometry (LC-MS/MS) coupled with an on-line solid phase system. The levels of 8-oxodGuo levels in sperm were related to the percentages of DNA fragmentation measured by both the TUNEL and SCSA (r = 0.22, p = 0.048; r = 0.12, p = 0.039). Sperm vitality, motility and morphology from all of the participants exhibited a weak correlation with the levels of 8-oxodGuo and the percentages of DNA fragmentation. Semen quality parameters may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Semen quality parameters may be insufficient to monitor sperm DNA fragmentation and oxidative damage. DNA damage in sperm is recommended to be included in routine measurements.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1973
Author(s):  
Muhammad Umair ◽  
Heiko Henning ◽  
Tom A. E. Stout ◽  
Anthony Claes

Sperm DNA fragmentation compromises fertilization and early embryo development. Since spermatozoa lack the machinery to repair DNA damage, to improve the likelihood of establishing a healthy pregnancy, it is preferable to process ejaculates of stallions with a high sperm DNA fragmentation index (DFI) before artificial insemination or intracytoplasmic sperm injection. The aim of this study was to examine a modified flotation density gradient centrifugation (DGC) technique in which semen was diluted with a colloid solution (Opti-prepTM) to increase its density prior to layering between colloid layers of lower and higher density. The optimal Opti-prepTM solution (20–60%) for use as the bottom/cushion layer was first determined, followed by a comparison between a modified sedimentation DGC and the modified flotation DGC technique, using different Opti-prepTM solutions (20%, 25% and 30%) as the top layer. Finally, the most efficient DGC technique was selected to process ejaculates from Friesian stallions (n = 3) with high sperm DFI (>20%). The optimal Opti-prepTM solution for the cushion layer was 40%. The modified sedimentation technique resulted in two different sperm populations, whereas the modified flotation technique yielded three populations. Among the variants tested, the modified flotation DGC using 20% Opti-prepTM as the top layer yielded the best results; the average sperm recovery was 57%; the DFI decreased significantly (from 12% to 4%) and the other sperm quality parameters, including progressive and total motility, percentages of spermatozoa with normal morphology and viable spermatozoa with an intact acrosome, all increased (p < 0.05). In Friesian stallions with high sperm DFI, the modified flotation DGC markedly decreased the DFI (from 31% to 5%) and significantly improved the other semen quality parameters, although sperm recovery was low (approximately 20%). In conclusion, stallion sperm DFI and other sperm quality parameters can be markedly improved using a modified flotation DGC technique employing a 40% Opti-prepTM cushion and a 20% top layer.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 384-393 ◽  
Author(s):  
M. Gomes ◽  
A. Gonçalves ◽  
E. Rocha ◽  
R. Sá ◽  
A. Alves ◽  
...  

SummaryExposure to lead may cause changes in the male reproductive system. We evaluated the effect of lead chloride (PbCl2) in vitro on semen quality from 31 individuals. Samples were incubated at room temperature for two exposure times (4 h and 8 h) and with two concentrations of PbCl2 (15 μg/ml or 30 μg/ml). Results showed that PbCl2 significantly inhibited rapid progressive motility and caused an increase in the percentage of tail anomalies in both times and concentrations assessed, as well as a decrease in vitality in the group exposed to 30 μg/ml PbCl2. A significant increase in immotile sperm was also observed between the group control and the groups submitted to lead. Total motility and DNA fragmentation also showed a significant decrease and increase, respectively, after 4 h of incubation in the group exposed to 30 μg/ml and in both groups after 8 h of incubation. In conclusion, PbCl2 affected sperm parameters and DNA integrity, which are essential for male fertility.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Agustín García-Peiró ◽  
Jordi Ribas-Maynou ◽  
María Oliver-Bonet ◽  
Joaquima Navarro ◽  
Miguel A. Checa ◽  
...  

Varicocele is one of the most common causes of low semen quality, which is reflected in high percentages of sperm cells with fragmented DNA. While varicocelectomy is usually performed to ameliorate a patient’s fertility, its impact on sperm DNA integrity in the case of subclinical varicocele is poorly documented. In this study, multiple DNA fragmentation analyses (TUNEL, SCD, and SCSA) were performed on semen samples from sixty infertile patients with varicocele (15 clinical varicoceles, 19 clinical varicoceles after surgical treatment, 16 subclinical varicoceles, and 10 subclinical varicoceles after surgical treatment). TUNEL, SCD, and SCSA assays all showed substantial sperm DNA fragmentation levels that were comparable between subclinical and clinical varicocele patients. Importantly, varicocelectomy did improve sperm quality in patients with clinical varicocele; however, this was not the case in patients with subclinical varicocele. In summary, although infertile patients with clinical and subclinical varicocele have similar sperm DNA quality, varicocelectomy should only be advised for patients with clinical varicocele.


Sign in / Sign up

Export Citation Format

Share Document