scholarly journals Multiple Determinations of Sperm DNA Fragmentation Show That Varicocelectomy Is Not Indicated for Infertile Patients with Subclinical Varicocele

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Agustín García-Peiró ◽  
Jordi Ribas-Maynou ◽  
María Oliver-Bonet ◽  
Joaquima Navarro ◽  
Miguel A. Checa ◽  
...  

Varicocele is one of the most common causes of low semen quality, which is reflected in high percentages of sperm cells with fragmented DNA. While varicocelectomy is usually performed to ameliorate a patient’s fertility, its impact on sperm DNA integrity in the case of subclinical varicocele is poorly documented. In this study, multiple DNA fragmentation analyses (TUNEL, SCD, and SCSA) were performed on semen samples from sixty infertile patients with varicocele (15 clinical varicoceles, 19 clinical varicoceles after surgical treatment, 16 subclinical varicoceles, and 10 subclinical varicoceles after surgical treatment). TUNEL, SCD, and SCSA assays all showed substantial sperm DNA fragmentation levels that were comparable between subclinical and clinical varicocele patients. Importantly, varicocelectomy did improve sperm quality in patients with clinical varicocele; however, this was not the case in patients with subclinical varicocele. In summary, although infertile patients with clinical and subclinical varicocele have similar sperm DNA quality, varicocelectomy should only be advised for patients with clinical varicocele.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummarySperm DNA fragmentation is referred to as one of the main causes of male infertility. Failures in the protamination process, apoptosis and action of reactive oxygen species (ROS) are considered the most important causes of DNA fragmentation. Action of ROS or changes in sperm protamination would increase the susceptibility of sperm DNA to fragmentation. Routine semen analysis is unable to estimate sperm chromatin damage. Sperm DNA integrity influences sperm functional capability, therefore tests that measure sperm DNA fragmentation are important to assess fertility disorders. Actually, there is a considerable number of methods for assessing sperm DNA fragmentation and chromatin integrity, sperm chromatin stability assay (SCSA modified), sperm chromatin dispersion (SCD), comet assay, transferase dUTP nick end labelling (TUNEL); and protamine evaluation in sperm chromatin assay, such as toluidine blue, CMA3, protamine expression and evaluation of cysteine radicals. This review aims to describe the main causes of sperm DNA fragmentation and the tests commonly used to evaluate sperm DNA fragmentation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fatemeh Eini ◽  
Maryam Azizi Kutenaei ◽  
Fayegheh Zareei ◽  
Zeinolabedin Sharifian Dastjerdi ◽  
Maryam Hosseinzadeh Shirzeyli ◽  
...  

Abstract Background Although bacterial infections have been recognized as a possible cause of male infertility, the effect of bacterial infections on sperm quality and sperm DNA fragmentation remains controversial. The current study aimed to investigate the prevalence rate of bacterial infection in subfertile men and its effect on semen quality. Seminal fluid was collected from 172 male members of infertile couples attending the andrology infertility center and a group of 35 fertile subjects as a control. Sperm parameters and DNA fragmentation were evaluated based on the type of bacteria in all ejaculates. Results From the 172 patients investigated for infertility, 60 (34.88%) patients had a positive culture for pathogenic bacteria of different species. Leukocytospermia was significantly higher in infected samples in comparison with non-infected samples (p < 0.05). Sperm concentration and motility and morphology were significantly lower in infected than non-infected samples. Moreover, sperm DNA fragmentation was significantly higher in infected than non-infected samples. Besides, our results showed that sperm DNA fragmentation was correlated significantly with leukocytospermia (R: 0.22, p < 0.01). Conclusion The present study suggested that bacterial infection significantly correlated with leukocytospermia could impair male fertility potential through decreasing sperm motility, morphology, and DNA integrity.


Biomonitoring ◽  
2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Hueiwang Anna Jeng ◽  
Ruei-Nian Li ◽  
Wen-Yi Lin

Abstract:The present study aimed to investigate the relationship between semen quality parameters and DNA integrity, and determine whether semen quality parameters could serve as a reliable biomarker for monitoring sperm DNA damage. Conventional semen parameters from a total of 202 male human subjects were analyzed. DNA fragmentation and 8-oxo-7,8-dihydro-2′- deoxyguanosine (8-oxoGuo) were used to assess sperm DNA integrity. DNA fragmentation was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and sperm chromatin structure assay (SCSA), while 8-oxodGuo was quantified by the liquid chromatography/tandem mass spectrometry (LC-MS/MS) coupled with an on-line solid phase system. The levels of 8-oxodGuo levels in sperm were related to the percentages of DNA fragmentation measured by both the TUNEL and SCSA (r = 0.22, p = 0.048; r = 0.12, p = 0.039). Sperm vitality, motility and morphology from all of the participants exhibited a weak correlation with the levels of 8-oxodGuo and the percentages of DNA fragmentation. Semen quality parameters may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Semen quality parameters may be insufficient to monitor sperm DNA fragmentation and oxidative damage. DNA damage in sperm is recommended to be included in routine measurements.


Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 433-441 ◽  
Author(s):  
Renata Simões ◽  
Weber Beringui Feitosa ◽  
Adriano Felipe Perez Siqueira ◽  
Marcilio Nichi ◽  
Fabíola Freitas Paula-Lopes ◽  
...  

Sperm chromatin fragmentation may be caused by a number of factors, the most significant of which is reactive oxygen species. However, little is known about the effect of sperm oxidative stress (OS) on DNA integrity, fertilization, and embryonic development in cattle. Therefore, the goal of this study was to evaluate the influence of sperm OS susceptibility on the DNA fragmentation rate and in vitro embryo production (IVP) in a population of bulls. Groups of cryopreserved sperm samples were divided into four groups, based on their susceptibility to OS (G1, low OS; G2, average OS; G3, high OS; and G4, highest OS). Our results demonstrated that the sperm DNA integrity was compromised in response to increased OS susceptibility. Furthermore, semen samples with lower susceptibility to OS were also less susceptible to DNA damage (G1, 4.06%; G2, 6.09%; G3, 6.19%; and G4, 6.20%). In addition, embryo IVP provided evidence that the embryo cleavage rate decreased as the OS increased (G1, 70.18%; G2, 62.24%; G3, 55.85%; and G4, 50.93%), but no significant difference in the blastocyst rate or the number of blastomeres was observed among the groups. The groups with greater sensitivity to OS were also associated with a greater percentage of apoptotic cells (G1, 2.6%; G2, 2.76%; G3, 5.59%; and G4, 4.49%). In conclusion, we demonstrated that an increased susceptibility to OS compromises sperm DNA integrity and consequently reduces embryo quality.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1973
Author(s):  
Muhammad Umair ◽  
Heiko Henning ◽  
Tom A. E. Stout ◽  
Anthony Claes

Sperm DNA fragmentation compromises fertilization and early embryo development. Since spermatozoa lack the machinery to repair DNA damage, to improve the likelihood of establishing a healthy pregnancy, it is preferable to process ejaculates of stallions with a high sperm DNA fragmentation index (DFI) before artificial insemination or intracytoplasmic sperm injection. The aim of this study was to examine a modified flotation density gradient centrifugation (DGC) technique in which semen was diluted with a colloid solution (Opti-prepTM) to increase its density prior to layering between colloid layers of lower and higher density. The optimal Opti-prepTM solution (20–60%) for use as the bottom/cushion layer was first determined, followed by a comparison between a modified sedimentation DGC and the modified flotation DGC technique, using different Opti-prepTM solutions (20%, 25% and 30%) as the top layer. Finally, the most efficient DGC technique was selected to process ejaculates from Friesian stallions (n = 3) with high sperm DFI (>20%). The optimal Opti-prepTM solution for the cushion layer was 40%. The modified sedimentation technique resulted in two different sperm populations, whereas the modified flotation technique yielded three populations. Among the variants tested, the modified flotation DGC using 20% Opti-prepTM as the top layer yielded the best results; the average sperm recovery was 57%; the DFI decreased significantly (from 12% to 4%) and the other sperm quality parameters, including progressive and total motility, percentages of spermatozoa with normal morphology and viable spermatozoa with an intact acrosome, all increased (p < 0.05). In Friesian stallions with high sperm DFI, the modified flotation DGC markedly decreased the DFI (from 31% to 5%) and significantly improved the other semen quality parameters, although sperm recovery was low (approximately 20%). In conclusion, stallion sperm DFI and other sperm quality parameters can be markedly improved using a modified flotation DGC technique employing a 40% Opti-prepTM cushion and a 20% top layer.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Mona Bungum

Infertility affects 15% of all couples. Although male infertility factors with reduced semen quality are contributing to about half of all involuntary childlessness, the value of standard semen parameters in prediction of fertilityin vivoand choice of proper method for assisted reproduction is limited. In the search for better markers of male fertility, during the last 10 years, assessment of sperm DNA integrity has emerged as a strong new biomarker of semen quality that may have the potential to discriminate between infertile and fertile men. Sperm DNA Fragmentation Index (DFI) as assessed by the flow cytometric Sperm Chromatin Structure Assay (SCSA) can be used for evaluation of sperm chromatin integrity. The biological background for abnormal DFI is not completely known, but clinical data show that DFI above 30% is associated with very low chance for achieving pregnancy in natural way or by insemination, but notin vitro. Already when the DFI is above 20%, the chance of natural pregnancy may be reduced, despite other sperm parameters being normal. Thus this method may explain a significant proportion of cases of unexplained infertility and can be beneficial in counselling involuntary childless couples need ofin vitrofertilisation.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 384-393 ◽  
Author(s):  
M. Gomes ◽  
A. Gonçalves ◽  
E. Rocha ◽  
R. Sá ◽  
A. Alves ◽  
...  

SummaryExposure to lead may cause changes in the male reproductive system. We evaluated the effect of lead chloride (PbCl2) in vitro on semen quality from 31 individuals. Samples were incubated at room temperature for two exposure times (4 h and 8 h) and with two concentrations of PbCl2 (15 μg/ml or 30 μg/ml). Results showed that PbCl2 significantly inhibited rapid progressive motility and caused an increase in the percentage of tail anomalies in both times and concentrations assessed, as well as a decrease in vitality in the group exposed to 30 μg/ml PbCl2. A significant increase in immotile sperm was also observed between the group control and the groups submitted to lead. Total motility and DNA fragmentation also showed a significant decrease and increase, respectively, after 4 h of incubation in the group exposed to 30 μg/ml and in both groups after 8 h of incubation. In conclusion, PbCl2 affected sperm parameters and DNA integrity, which are essential for male fertility.


Zygote ◽  
2021 ◽  
pp. 1-4
Author(s):  
Caixia Yuan ◽  
Haixia Song ◽  
Zhulin Wang ◽  
Huaixiu Wang

Summary Intact human sperm DNA is an essential prerequisite for successful fertilization and embryo development. Abnormal sperm DNA fragmentation is a independent factor for male infertility. The objective of this study was to investigate the effects of Peijingsu, a health product, on the DNA integrity of human sperm. Peijingsu was administered for 15 days to 22 patients who had an abnormal sperm DNA fragmentation index (DFI). The DFIs before and after treatment were compared and analyzed using paired t-test. DFIs decreased significantly (P = 0.0008) after treatment, therefore it was concluded that Peijingsu effectively improved sperm DNA integrity in infertile patients who had an abnormal sperm DFI.


2016 ◽  
Vol 283 (1826) ◽  
pp. 20152708 ◽  
Author(s):  
Javier delBarco-Trillo ◽  
Olga García-Álvarez ◽  
Ana Josefa Soler ◽  
Maximiliano Tourmente ◽  
José Julián Garde ◽  
...  

Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.


Sign in / Sign up

Export Citation Format

Share Document