Device for the precise shape correction of optical surfaces by ion-beam and reactive plasma etching

Author(s):  
I. G. Zabrodin ◽  
B. A. Zakalov ◽  
I. A. Kas’kov ◽  
A. E. Pestov ◽  
N. N. Salashchenko ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3970
Author(s):  
Wojciech J. Nowak

An electron backscattered diffraction (EBSD) method provides information about the crystallographic structure of materials. However, a surface subjected to analysis needs to be well-prepared. This usually requires following a time-consuming procedure of mechanical polishing. The alternative methods of surface preparation for EBSD are performed via electropolishing or focus ion beam (FIB). In the present study, plasma etching using a glow discharge optical emission spectrometer (GD-OES) was applied for surface preparation for EBSD analysis. The obtained results revealed that plasma etching through GD-OES can be successfully used for surface preparation for EBSD analysis. However, it was also found that the plasma etching is sensitive for the alloy microstructure, i.e., the presence of intermetallic phases and precipitates such as carbides possess a different sputtering rate, resulting in non-uniform plasma etching. Preparation of the cross-section of oxidized CM247 revealed a similar problem with non-uniformity of plasma etching. The carbides and oxide scale possess a lower sputtering rate than the metallic matrix, which caused formation of relief. Based on obtained results, possible resolutions to suppress the effect of different sputtering rates are proposed.


2004 ◽  
Vol 78 (5) ◽  
pp. 651-654 ◽  
Author(s):  
R. Fechner ◽  
D. Flamm ◽  
W. Frank ◽  
A. Schindler ◽  
F. Frost ◽  
...  
Keyword(s):  
Ion Beam ◽  

Author(s):  
Martin Ehrhardt ◽  
Pierre Lorenz ◽  
Jens Bauer ◽  
Robert Heinke ◽  
Mohammad Afaque Hossain ◽  
...  

AbstractHigh-quality, ultra-precise processing of surfaces is of high importance for high-tech industry and requires a good depth control of processing, a low roughness of the machined surface and as little as possible surface and subsurface damage but cannot be realized by laser ablation processes. Contrary, electron/ion beam, plasma processes and dry etching are utilized in microelectronics, optics and photonics. Here, we have demonstrated a laser-induced plasma (LIP) etching of single crystalline germanium by an optically pumped reactive plasma, resulting in high quality etching. A Ti:Sapphire laser (λ = 775 nm, EPulse/max. = 1 mJ, t = 150 fs, frep. = 1 kHz) has been used, after focusing with a 60 mm lens, for igniting a temporary plasma in a CF4/O2 gas at near atmospheric pressure. Typical etching rate of approximately ~ 100 nm / min and a surface roughness of less than 11 nm rms were found. The etching results were studied in dependence on laser pulse energy, etching time, and plasma – surface distance. The mechanism of the etching process is expected to be of chemical nature by the formation of volatile products from the chemical reaction of laser plasma activated species with the germanium surface. This proposed laser etching process can provide new processing capabilities of materials for ultra—high precision laser machining of semiconducting materials as can applied for infrared optics machining.


2000 ◽  
Vol 88 (10) ◽  
pp. 5597-5604 ◽  
Author(s):  
P. Reinke ◽  
P. Oelhafen ◽  
H. Feldermann ◽  
C. Ronning ◽  
H. Hofsäss

2001 ◽  
Vol 15 (28n29) ◽  
pp. 1419-1427
Author(s):  
KARUR R. PADMANABHAN

The possibility of carrying out in situ ion beam analysis of a gas-solid interface using RBS/Channeling techniques has been investigated using chemical and plasma etching of Si . A specially constructed thin Si window cell is used to initiate chemical etching of Si using Xe F 2. Analysis of etched Si surface using conventional, micro RBS/Channeling and computer simulated channeling spectra indicates a smooth damage free surface with fairly uniform etching. A moderate increase in etching rate and channeling χ min is observed in the presence of the analyzing beam. The results of chemical etching are compared with that due to Ar + and Xe + plasma induced etching of Si . In situ microbeam channeling analysis with CCM (Channeling Contrast Microscopy) of the plasma-etched surface indicates distinct differences in both etching rate and damage profile of Si (100) surface. The etching rate enhancement and damage profile have been explained using conventional TRIM analysis and ion beam surface damage.


2012 ◽  
Vol 51 (3) ◽  
pp. 401 ◽  
Author(s):  
Hideo Takino ◽  
Kazuya Yamamura ◽  
Yasuhisa Sano ◽  
Yuzo Mori

2003 ◽  
Author(s):  
Khalil Arshak ◽  
Miroslav Mihov ◽  
Arous Arshak ◽  
Declan McDonagh ◽  
David Sutton ◽  
...  

2013 ◽  
Vol 102 ◽  
pp. 25-28 ◽  
Author(s):  
Thomas Kusserow ◽  
Matthias Wulf ◽  
Ricardo Zamora ◽  
Kelash Kanwar ◽  
Hartmut Hillmer

Sign in / Sign up

Export Citation Format

Share Document