Numerical study of the thermal processes occurring in materials under irradiation with high-energy heavy ions

Author(s):  
I. V. Amirkhanov ◽  
A. S. Khalil ◽  
I. Sarkhadov
2006 ◽  
Vol 51 (S1) ◽  
pp. S32-S43 ◽  
Author(s):  
I. V. Amirkhanov ◽  
A. Yu. Didyk ◽  
D. Z. Muzafarov ◽  
I. V. Puzynin ◽  
T. P. Puzynina ◽  
...  

Author(s):  
I. V. Amirkhanov ◽  
A. Yu. Didyk ◽  
I. V. Puzynin ◽  
T. P. Puzynina ◽  
N. R. Sarkar ◽  
...  

2013 ◽  
Vol 341 ◽  
pp. 181-210 ◽  
Author(s):  
S.K. Tripathi

High-energy electron, proton, neutron, photon and ion irradiation of semiconductor diodes and solar cells has long been a topic of considerable interest in the field of semiconductor device fabrication. The inevitable damage production during the process of irradiation is used to study and engineer the defects in semiconductors. In a strong radiation environment in space, the electrical performance of solar cells is degraded due to direct exposure to energetically charged particles. A considerable amount of work has been reported on the study of radiation damage in various solar cell materials and devices in the recent past. In most cases, high-energy heavy ions damage the material by producing a large amount of extended defects, but high-energy light ions are suitable for producing and modifying the intrinsic point defects. The defects can play a variety of electronically active roles that affect the electrical, structural and optical properties of a semiconductor. This review article aims to present an overview of the advancement of research in the modification of glassy semiconducting thin films using different types of radiations (light, proton and swift heavy ions). The work which has been done in our laboratory related to irradiation induced effects in semiconducting thin films will also be compared with the existing literature.


2007 ◽  
Vol 782 (1-4) ◽  
pp. 215-223 ◽  
Author(s):  
David d'Enterria
Keyword(s):  

Author(s):  
P. Laurent ◽  
F. Acero ◽  
V. Beckmann ◽  
S. Brandt ◽  
F. Cangemi ◽  
...  

AbstractBased upon dual focusing techniques, the Polarimetric High-Energy Modular Telescope Observatory (PHEMTO) is designed to have performance several orders of magnitude better than the present hard X-ray instruments, in the 1–600 keV energy range. This, together with its angular resolution of around one arcsecond, and its sensitive polarimetry measurement capability, will give PHEMTO the improvements in scientific performance needed for a mission in the 2050 era in order to study AGN, galactic black holes, neutrons stars, and supernovae. In addition, its high performance will enable the study of the non-thermal processes in galaxy clusters with an unprecedented accuracy.


Author(s):  
Kamran Nazir ◽  
Naveed Durrani ◽  
Imran Akhtar ◽  
M. Saif Ullah Khalid

Due to high energy demands of data centers and the energy crisis throughout the world, efficient heat transfer in a data center is an active research area. Until now major emphasis lies upon study of air flow rate and temperature profiles for different rack configurations and tile layouts. In current work, we consider different hot aisle (HA) and cold aisle (CA) configurations to study heat transfer phenomenon inside a data center. In raised floor data centers when rows of racks are parallel to each other, in a conventional cooling system, there are equal number of hot and cold aisles for odd number of rows of racks. For even number of rows of racks, whatever configuration of hot/cold aisles is adopted, number of cold aisles is either one greater or one less than number of hot aisles i.e. two cases are possible case A: n(CA) = n(HA) + 1 and case B: n(CA) = n(HA) − 1 where n(CA), n(HA) denotes number of cold and hot aisles respectively. We perform numerical simulations for two (case1) and four (case 2) racks data center. The assumption of constant pressure below plenum reduces the problem domain to above plenum area only. In order to see which configuration provides higher heat transfer across servers, we measure heat transfer across servers on the basis of temperature differences across racks, and in order to validate them, we find mass flow rates on rack outlet. On the basis of results obtained, we conclude that for even numbered rows of rack data center, using more cold aisles than hot aisles provide higher heat transfer across servers. These results provide guidance on the design and layout of a data center.


Sign in / Sign up

Export Citation Format

Share Document