Parametric Study of Driver and Reflector of Single Axis Acoustic Levitator using Finite Element Method

2020 ◽  
Vol 66 (3) ◽  
pp. 242-249
Author(s):  
Saurabh Yadav ◽  
Arpan Gupta
2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


Author(s):  
C. Nadarajah

Weld neck flanges on piping systems are susceptible to flange face corrosion when they are exposed to corrosive environments. This paper examines the maximum amount of corrosion a weld neck flange face could tolerate without loosing structural integrity and hence the flange is fit for service. A parametric study using finite element method was used to examine the entire range of weld neck flanges listed in ASME B16.5 Code, Pipe Flanges and Flanged Fittings. From the study, a number of tables were developed limiting the amount of corrosion for the various classes and sizes of flanges.


Author(s):  
Meng Lin ◽  
Yong Li ◽  
Mohammad Salem ◽  
J. J. Roger Cheng ◽  
Samer Adeeb ◽  
...  

Abstract The integrity decisions for cracked pipelines can be made based on the conventional Finite Element Method (FEM). However, it is extremely time-consuming due to the requirement of remeshing to continuously conform to the geometric discontinuities as the crack propagates. The more recently developed Extended Finite Element Method (XFEM) provides a more robust approach in which a crack can propagate through the finite element analysis mesh and thus alleviates the requirement for remeshing. However, the current criteria for crack initiation and propagation in XFEM framework have not been calibrated to pipeline steels. The current built-in criterion in Abaqus assumes a fixed value as the damage strain. Crack initiation occurs after this strain is exceeded. However, the accuracy of numerical crack propagating path is questionable, especially in a side-grooved single edge notched tension (SENT) model. Faster crack initiation at specimen side over the center conflicts with the actual crack propagating path obtained from a physical test. This paper develops a new crack initiation criterion which defines a variable damage strain as a function of the stress configuration at the crack tip. The criterion is modified from the Mohr-Coulomb fracture criterion as a function of stress triaxiality and Lode angle parameters. The damage strain exponentially decreases as the stress triaxiality increases. This paper presents a parametric study on the effects of material parameters considered in the criterion on the development of damage strain locus. The new crack initiation criterion is applied to a side-grooved SENT model, in which the corresponding failure mechanism is defined by the user’s subroutine UDMGINI in Abaqus.


Sign in / Sign up

Export Citation Format

Share Document