A Parametric Study of ASME B16.5 Flanges Which Has Experienced Flange Face Corrosion

Author(s):  
C. Nadarajah

Weld neck flanges on piping systems are susceptible to flange face corrosion when they are exposed to corrosive environments. This paper examines the maximum amount of corrosion a weld neck flange face could tolerate without loosing structural integrity and hence the flange is fit for service. A parametric study using finite element method was used to examine the entire range of weld neck flanges listed in ASME B16.5 Code, Pipe Flanges and Flanged Fittings. From the study, a number of tables were developed limiting the amount of corrosion for the various classes and sizes of flanges.

Author(s):  
Chithranjan Nadarajah ◽  
Tom Schachinger

A parametric study of square local thin areas on cylindrical shells under external pressure was conducted using finite element method. The study concentrated on both elastic and as well as plastic buckling of the local thin areas. From the study, conservative screening curves were developed to address the structural integrity of the local thin area under external pressure.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


Author(s):  
Ankang Cheng ◽  
Nian-Zhong Chen

Structural integrity assessment for subsea pipelines at high pressure high temperature (HPHT) service conditions is one of the most challenging research topics in offshore engineering sector. This paper is to introduce an extended finite element method (XFEM) based numerical approach for structural integrity assessment for subsea pipelines serving HPHT reservoir. A 3D model of a quarter of subsea pipe section with an external semi-elliptical surface crack located at the weld toe is built and the crack propagation under fatigue load is simulated using the XFEM. Results are presented and investigated from both geometric and mechanical aspects. Theoretical basis and limitation for this technique are discussed. Suggestions are given for future application of the XFEM technique based on fracture mechanics when assessing the structural integrity of subsea pipelines at HPHT service conditions.


2006 ◽  
Vol 119 (5) ◽  
pp. 3384-3384
Author(s):  
Samir N. Y. Gerges ◽  
Mrio Trichs ◽  
Alessandro M. Balvedi

2015 ◽  
Vol 06 (03) ◽  
pp. 1550007
Author(s):  
Sung-Jun Lee ◽  
Sang-Hwan Lee ◽  
Yoon-Suk Chang

The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.


1990 ◽  
Vol 112 (2) ◽  
pp. 184-187 ◽  
Author(s):  
G. D. Lewis ◽  
Y. J. Chao

Trunnion piping elbows are commonly used in piping systems in power and chemical plants. The flexibility of the trunnion piping elbows is normally less than that of the plain piping elbows. In this paper, the finite element method is used to derive the in-plane and out-of-plane flexibility factors of trunnion piping elbows. The results can be easily adopted into the piping flexibility analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Liu-Lei Shen ◽  
Zhi-Bin Shen ◽  
Yan Xie ◽  
Hai-Yang Li

A solid rocket motor is one of the critical components of solid missiles, and its life and reliability mostly depend on the mechanical behavior of a composite solid propellant (CSP). Effective mechanical properties are critical material constants to analyze the structural integrity of propellant grain. They are estimated by a numerical method that combines the Voronoi cell finite element method (VCFEM) and the homogenization method in the present paper. The correctness of this combined method has been validated by comparing with a standard finite element method and conventional theoretical models. The effective modulus and the effective Poisson’s ratio of a CSP varying with volume fraction and component material properties are estimated. The result indicates that the variations of the volume fraction of inclusions and the properties of the matrix have obvious influences on the effective mechanical properties of a CSP. The microscopic numerical analysis method proposed in this paper can also be used to provide references for the design and the analysis of other large volume fraction composite materials.


Sign in / Sign up

Export Citation Format

Share Document